taha66 commited on
Commit
dc91da8
·
verified ·
1 Parent(s): 96db484

Upload 6 files

Browse files
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import numpy as np
3
+ import joblib
4
+ import gradio as gr
5
+
6
+
7
+
8
+
9
+ # Load the preprocessing steps and the model
10
+ label_encoders = joblib.load('label_encoders.pkl')
11
+ one_hot_encoder = joblib.load('one_hot_encoder.pkl')
12
+ min_max_scaler = joblib.load('min_max_scaler.pkl')
13
+ model = joblib.load('logistic_regression_model.pkl')
14
+ le_target = joblib.load('label_encoder_target.pkl')
15
+
16
+
17
+
18
+
19
+
20
+
21
+
22
+
23
+
24
+ def preprocess_data(data):
25
+
26
+ df = pd.DataFrame([data])
27
+
28
+ label_encode_cols = ["Partner", "Dependents", "PhoneService", "PaperlessBilling", "gender"]
29
+ one_hot_encode_cols = ["MultipleLines", "InternetService", "OnlineSecurity", "OnlineBackup",
30
+ "DeviceProtection", "TechSupport", "StreamingTV", "StreamingMovies",
31
+ "Contract", "PaymentMethod"]
32
+ min_max_scale_cols = ["tenure", "MonthlyCharges", "TotalCharges"]
33
+
34
+ # Strip leading and trailing spaces from string inputs
35
+ for col in label_encode_cols + one_hot_encode_cols:
36
+ df[col] = df[col].str.strip()
37
+
38
+ # Convert non-numeric values to NaN and fill them with the mean of the column
39
+ df[min_max_scale_cols] = df[min_max_scale_cols].replace(' ', np.nan).astype(float)
40
+ df[min_max_scale_cols] = df[min_max_scale_cols].fillna(df[min_max_scale_cols].mean())
41
+
42
+ # Label encode specified columns
43
+ for col in label_encode_cols:
44
+ le = label_encoders[col]
45
+ df[col] = le.transform(df[col])
46
+
47
+ # One-hot encode specified columns
48
+ one_hot_encoded = one_hot_encoder.transform(df[one_hot_encode_cols])
49
+
50
+ # Min-max scale specified columns
51
+ scaled_numerical = min_max_scaler.transform(df[min_max_scale_cols])
52
+
53
+
54
+
55
+ # Combine processed columns into one DataFrame
56
+ X_processed = np.hstack((df[label_encode_cols].values, scaled_numerical, one_hot_encoded))
57
+
58
+ return X_processed
59
+
60
+ def predict(gender, senior_citizen, partner, dependents, tenure, phone_service, multiple_lines, internet_service,
61
+ online_security, online_backup, device_protection, tech_support, streaming_tv, streaming_movies,
62
+ contract, paperless_billing, payment_method, monthly_charges, total_charges):
63
+
64
+ data = {
65
+ "gender": gender,
66
+ "SeniorCitizen": senior_citizen,
67
+ "Partner": partner,
68
+ "Dependents": dependents,
69
+ "tenure": tenure,
70
+ "PhoneService": phone_service,
71
+ "MultipleLines": multiple_lines,
72
+ "InternetService": internet_service,
73
+ "OnlineSecurity": online_security,
74
+ "OnlineBackup": online_backup,
75
+ "DeviceProtection": device_protection,
76
+ "TechSupport": tech_support,
77
+ "StreamingTV": streaming_tv,
78
+ "StreamingMovies": streaming_movies,
79
+ "Contract": contract,
80
+ "PaperlessBilling": paperless_billing,
81
+ "PaymentMethod": payment_method,
82
+ "MonthlyCharges": monthly_charges,
83
+ "TotalCharges": total_charges
84
+ }
85
+
86
+ try:
87
+ X_new = preprocess_data(data)
88
+ prediction = model.predict(X_new)
89
+ prediction = le_target.inverse_transform(prediction)
90
+ return "Churn" if prediction[0] == 'Yes' else "No Churn"
91
+ except Exception as e:
92
+ print("Error during prediction:", e)
93
+ return str(e)
94
+
95
+ # Define the Gradio interface
96
+ inputs = [
97
+ gr.Radio(label="Gender", choices=["Female", "Male"]),
98
+ gr.Number(label="Senior Citizen (0 or 1)"),
99
+ gr.Radio(label="Partner", choices=["Yes", "No"]),
100
+ gr.Radio(label="Dependents", choices=["Yes", "No"]),
101
+ gr.Number(label="Tenure (integer)"),
102
+ gr.Radio(label="Phone Service", choices=["Yes", "No"]),
103
+ gr.Radio(label="Multiple Lines", choices=["Yes", "No", "No phone service"]),
104
+ gr.Radio(label="Internet Service", choices=["DSL", "Fiber optic", "No"]),
105
+ gr.Radio(label="Online Security", choices=["Yes", "No", "No internet service"]),
106
+ gr.Radio(label="Online Backup", choices=["Yes", "No", "No internet service"]),
107
+ gr.Radio(label="Device Protection", choices=["Yes", "No", "No internet service"]),
108
+ gr.Radio(label="Tech Support", choices=["Yes", "No", "No internet service"]),
109
+ gr.Radio(label="Streaming TV", choices=["Yes", "No", "No internet service"]),
110
+ gr.Radio(label="Streaming Movies", choices=["Yes", "No", "No internet service"]),
111
+ gr.Radio(label="Contract", choices=["Month-to-month", "One year", "Two year"]),
112
+ gr.Radio(label="Paperless Billing", choices=["Yes", "No"]),
113
+ gr.Radio(label="Payment Method", choices=["Electronic check", "Mailed check", "Bank transfer (automatic)", "Credit card (automatic)"]),
114
+ gr.Number(label="Monthly Charges (float)"),
115
+ gr.Number(label="Total Charges (float)")
116
+ ]
117
+
118
+ outputs = gr.Textbox(label="Prediction")
119
+
120
+ # Create the Gradio interface
121
+ gr.Interface(fn=predict, inputs=inputs, outputs=outputs, title="Churn Prediction Model").launch()
label_encoder_target.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abaa19d805b61f0a5c204049ef0179bf2d9dc8f69678ae91fcd2549afecf1612
3
+ size 537
label_encoders.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:048b8994247d9d5a7d4a37ddf59b9f625d85b891697128597273f5929b02865d
3
+ size 1704
logistic_regression_model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e527cc822e0015fc69d2b8a90b29b77a3578c24e60924754800a7a4beda0c42
3
+ size 1183
min_max_scaler.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:791ce9f20bba7e9a60dd5172153c08554f989addc99b732a6fc9b0096d1e5f67
3
+ size 1151
one_hot_encoder.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19bb9638a3d7cd799d3c49cf305eb088b50d7509ee6093aba241efc75ecbeb5d
3
+ size 3922