blogpost_app / app.py
talha2001's picture
Update app.py
15f0e98 verified
raw
history blame
2.38 kB
import streamlit as st
from datasets import load_dataset
from transformers import GPT2Tokenizer, GPT2LMHeadModel, DataCollatorForLanguageModeling, Trainer, TrainingArguments
@st.cache_resource
def load_and_fine_tune_model():
# Load the dataset
dataset = load_dataset("blog_authorship_corpus")
# Load the tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
# Data collator
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# Load the model
model = GPT2LMHeadModel.from_pretrained("gpt2")
# Training arguments
training_args = TrainingArguments(
output_dir="./results",
overwrite_output_dir=True,
num_train_epochs=1,
per_device_train_batch_size=2,
save_steps=10_000,
save_total_limit=2,
)
# Initialize the Trainer
trainer = Trainer(
model=model,
args=training_args,
data_collator=data_collator,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['test']
)
# Fine-tune the model
trainer.train()
# Save the fine-tuned model
model.save_pretrained("./fine-tuned-gpt2")
tokenizer.save_pretrained("./fine-tuned-gpt2")
return model, tokenizer
def generate_blog_post(prompt, model, tokenizer, max_length=500, temperature=0.7, top_k=50):
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(
input_ids,
max_length=max_length,
temperature=temperature,
top_k=top_k,
no_repeat_ngram_size=2,
num_return_sequences=1
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Streamlit UI
st.title("Blog Post Generator")
prompt = st.text_input("Enter a prompt for the blog post:", "The future of artificial intelligence in daily life")
if st.button("Generate Blog Post"):
with st.spinner("Fine-tuning the model. This might take a few minutes..."):
model, tokenizer = load_and_fine_tune_model()
blog_post = generate_blog_post(prompt, model, tokenizer)
st.subheader("Generated Blog Post")
st.write(blog_post)