Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,76 +1,40 @@
|
|
1 |
import streamlit as st
|
2 |
-
from
|
3 |
-
from transformers import GPT2Tokenizer, GPT2LMHeadModel, DataCollatorForLanguageModeling, Trainer, TrainingArguments
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
15 |
-
|
16 |
-
def tokenize_function(examples):
|
17 |
-
return tokenizer(examples["text"], truncation=True)
|
18 |
-
|
19 |
-
tokenized_datasets = dataset.map(tokenize_function, batched=True, remove_columns=["text"])
|
20 |
-
|
21 |
-
# Data collator
|
22 |
-
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
23 |
-
|
24 |
-
# Load the model
|
25 |
-
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
26 |
-
|
27 |
-
# Training arguments
|
28 |
-
training_args = TrainingArguments(
|
29 |
-
output_dir="./results",
|
30 |
-
overwrite_output_dir=True,
|
31 |
-
num_train_epochs=1,
|
32 |
-
per_device_train_batch_size=2,
|
33 |
-
save_steps=10_000,
|
34 |
-
save_total_limit=2,
|
35 |
-
)
|
36 |
|
37 |
-
#
|
38 |
-
trainer = Trainer(
|
39 |
-
model=model,
|
40 |
-
args=training_args,
|
41 |
-
data_collator=data_collator,
|
42 |
-
train_dataset=tokenized_datasets['train'],
|
43 |
-
eval_dataset=tokenized_datasets['test']
|
44 |
-
)
|
45 |
-
|
46 |
-
# Fine-tune the model
|
47 |
-
trainer.train()
|
48 |
-
|
49 |
-
# Save the fine-tuned model
|
50 |
-
model.save_pretrained("./fine-tuned-gpt2")
|
51 |
-
tokenizer.save_pretrained("./fine-tuned-gpt2")
|
52 |
-
return model, tokenizer
|
53 |
-
|
54 |
-
def generate_blog_post(prompt, model, tokenizer, max_length=500, temperature=0.7, top_k=50):
|
55 |
-
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
56 |
output = model.generate(
|
57 |
input_ids,
|
58 |
max_length=max_length,
|
59 |
-
|
60 |
-
top_k=top_k,
|
61 |
no_repeat_ngram_size=2,
|
62 |
-
|
63 |
)
|
64 |
-
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
65 |
-
return generated_text
|
66 |
|
67 |
-
#
|
|
|
|
|
|
|
|
|
|
|
68 |
st.title("Blog Post Generator")
|
69 |
-
|
|
|
|
|
70 |
|
71 |
if st.button("Generate Blog Post"):
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
|
|
3 |
|
4 |
+
# Load pre-trained GPT-2 model and tokenizer
|
5 |
+
model_name = 'gpt2'
|
6 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
7 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
8 |
|
9 |
+
# Function to generate blog post for a given topic
|
10 |
+
def generate_blog_post(topic, max_length=300):
|
11 |
+
# Encode the input topic into tokens
|
12 |
+
input_ids = tokenizer.encode(topic, return_tensors='pt')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
# Generate text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
output = model.generate(
|
16 |
input_ids,
|
17 |
max_length=max_length,
|
18 |
+
num_return_sequences=1,
|
|
|
19 |
no_repeat_ngram_size=2,
|
20 |
+
early_stopping=True
|
21 |
)
|
|
|
|
|
22 |
|
23 |
+
# Decode the output tokens into a string
|
24 |
+
blog_post = tokenizer.decode(output[0], skip_special_tokens=True)
|
25 |
+
|
26 |
+
return blog_post
|
27 |
+
|
28 |
+
# Streamlit app
|
29 |
st.title("Blog Post Generator")
|
30 |
+
|
31 |
+
topic = st.text_input("Enter a topic for the blog post:")
|
32 |
+
max_length = st.slider("Maximum length of the blog post:", min_value=50, max_value=1000, value=300)
|
33 |
|
34 |
if st.button("Generate Blog Post"):
|
35 |
+
if topic:
|
36 |
+
with st.spinner('Generating blog post...'):
|
37 |
+
blog_post = generate_blog_post(topic, max_length)
|
38 |
+
st.write(blog_post)
|
39 |
+
else:
|
40 |
+
st.warning("Please enter a topic.")
|