Spaces:
Running
on
Zero
Running
on
Zero
zhoubofan.zbf
commited on
Commit
·
5f21aef
1
Parent(s):
1d881df
add flow decoder tensorrt infer
Browse files- cosyvoice/bin/export_trt.py +100 -5
- cosyvoice/cli/cosyvoice.py +2 -3
- cosyvoice/cli/model.py +19 -4
- cosyvoice/flow/decoder.py +1 -1
- cosyvoice/flow/flow_matching.py +27 -6
cosyvoice/bin/export_trt.py
CHANGED
@@ -1,8 +1,103 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
3 |
try:
|
4 |
import tensorrt
|
5 |
except ImportError:
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
|
6 |
+
logging.getLogger('matplotlib').setLevel(logging.WARNING)
|
7 |
+
|
8 |
try:
|
9 |
import tensorrt
|
10 |
except ImportError:
|
11 |
+
error_msg_zh = [
|
12 |
+
"step.1 下载 tensorrt .tar.gz 压缩包并解压,下载地址: https://developer.nvidia.com/tensorrt/download/10x",
|
13 |
+
"step.2 使用 tensorrt whl 包进行安装根据 python 版本对应进行安装,如 pip install ${TensorRT-Path}/python/tensorrt-10.2.0-cp38-none-linux_x86_64.whl",
|
14 |
+
"step.3 将 tensorrt 的 lib 路径添加进环境变量中,export LD_LIBRARY_PATH=${TensorRT-Path}/lib/"
|
15 |
+
]
|
16 |
+
print("\n".join(error_msg_zh))
|
17 |
+
sys.exit(1)
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from cosyvoice.cli.cosyvoice import CosyVoice
|
21 |
+
|
22 |
+
def get_args():
|
23 |
+
parser = argparse.ArgumentParser(description='Export your model for deployment')
|
24 |
+
parser.add_argument('--model_dir',
|
25 |
+
type=str,
|
26 |
+
default='pretrained_models/CosyVoice-300M',
|
27 |
+
help='Local path to the model directory')
|
28 |
+
|
29 |
+
parser.add_argument('--export_half',
|
30 |
+
action='store_true',
|
31 |
+
help='Export with half precision (FP16)')
|
32 |
+
|
33 |
+
args = parser.parse_args()
|
34 |
+
print(args)
|
35 |
+
return args
|
36 |
+
|
37 |
+
def main():
|
38 |
+
args = get_args()
|
39 |
+
|
40 |
+
cosyvoice = CosyVoice(args.model_dir, load_jit=False, load_trt=False)
|
41 |
+
|
42 |
+
flow = cosyvoice.model.flow
|
43 |
+
estimator = cosyvoice.model.flow.decoder.estimator
|
44 |
+
|
45 |
+
dtype = torch.float32 if not args.export_half else torch.float16
|
46 |
+
device = torch.device("cuda")
|
47 |
+
batch_size = 1
|
48 |
+
seq_len = 1024
|
49 |
+
hidden_size = flow.output_size
|
50 |
+
x = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
51 |
+
mask = torch.zeros((batch_size, 1, seq_len), dtype=dtype, device=device)
|
52 |
+
mu = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
53 |
+
t = torch.tensor([0.], dtype=dtype, device=device)
|
54 |
+
spks = torch.rand((batch_size, hidden_size), dtype=dtype, device=device)
|
55 |
+
cond = torch.rand((batch_size, hidden_size, seq_len), dtype=dtype, device=device)
|
56 |
+
|
57 |
+
onnx_file_name = 'estimator_fp16.onnx' if args.export_half else 'estimator_fp32.onnx'
|
58 |
+
onnx_file_path = os.path.join(args.model_dir, onnx_file_name)
|
59 |
+
dummy_input = (x, mask, mu, t, spks, cond)
|
60 |
+
|
61 |
+
estimator = estimator.to(dtype)
|
62 |
+
|
63 |
+
torch.onnx.export(
|
64 |
+
estimator,
|
65 |
+
dummy_input,
|
66 |
+
onnx_file_path,
|
67 |
+
export_params=True,
|
68 |
+
opset_version=18,
|
69 |
+
do_constant_folding=True,
|
70 |
+
input_names=['x', 'mask', 'mu', 't', 'spks', 'cond'],
|
71 |
+
output_names=['output'],
|
72 |
+
dynamic_axes={
|
73 |
+
'x': {2: 'seq_len'},
|
74 |
+
'mask': {2: 'seq_len'},
|
75 |
+
'mu': {2: 'seq_len'},
|
76 |
+
'cond': {2: 'seq_len'},
|
77 |
+
'output': {2: 'seq_len'},
|
78 |
+
}
|
79 |
+
)
|
80 |
+
|
81 |
+
tensorrt_path = os.environ.get('tensorrt_root_dir')
|
82 |
+
if not tensorrt_path:
|
83 |
+
raise EnvironmentError("Please set the 'tensorrt_root_dir' environment variable.")
|
84 |
+
|
85 |
+
if not os.path.isdir(tensorrt_path):
|
86 |
+
raise FileNotFoundError(f"The directory {tensorrt_path} does not exist.")
|
87 |
+
|
88 |
+
trt_lib_path = os.path.join(tensorrt_path, "lib")
|
89 |
+
if trt_lib_path not in os.environ.get('LD_LIBRARY_PATH', ''):
|
90 |
+
print(f"Adding TensorRT lib path {trt_lib_path} to LD_LIBRARY_PATH.")
|
91 |
+
os.environ['LD_LIBRARY_PATH'] = f"{os.environ.get('LD_LIBRARY_PATH', '')}:{trt_lib_path}"
|
92 |
+
|
93 |
+
trt_file_name = 'estimator_fp16.plan' if args.export_half else 'estimator_fp32.plan'
|
94 |
+
trt_file_path = os.path.join(args.model_dir, trt_file_name)
|
95 |
+
|
96 |
+
trtexec_cmd = f"{tensorrt_path}/bin/trtexec --onnx={onnx_file_path} --saveEngine={trt_file_path} " \
|
97 |
+
"--minShapes=x:1x80x1,mask:1x1x1,mu:1x80x1,t:1,spks:1x80,cond:1x80x1 " \
|
98 |
+
"--maxShapes=x:1x80x4096,mask:1x1x4096,mu:1x80x4096,t:1,spks:1x80,cond:1x80x4096 --verbose"
|
99 |
+
|
100 |
+
os.system(trtexec_cmd)
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
main()
|
cosyvoice/cli/cosyvoice.py
CHANGED
@@ -21,7 +21,7 @@ from cosyvoice.utils.file_utils import logging
|
|
21 |
|
22 |
class CosyVoice:
|
23 |
|
24 |
-
def __init__(self, model_dir, load_jit=True, load_trt=True):
|
25 |
instruct = True if '-Instruct' in model_dir else False
|
26 |
self.model_dir = model_dir
|
27 |
if not os.path.exists(model_dir):
|
@@ -43,8 +43,7 @@ class CosyVoice:
|
|
43 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
44 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
45 |
if load_trt:
|
46 |
-
|
47 |
-
self.model.load_trt()
|
48 |
del configs
|
49 |
|
50 |
def list_avaliable_spks(self):
|
|
|
21 |
|
22 |
class CosyVoice:
|
23 |
|
24 |
+
def __init__(self, model_dir, load_jit=True, load_trt=True, use_fp16=False):
|
25 |
instruct = True if '-Instruct' in model_dir else False
|
26 |
self.model_dir = model_dir
|
27 |
if not os.path.exists(model_dir):
|
|
|
43 |
self.model.load_jit('{}/llm.text_encoder.fp16.zip'.format(model_dir),
|
44 |
'{}/llm.llm.fp16.zip'.format(model_dir))
|
45 |
if load_trt:
|
46 |
+
self.model.load_trt(model_dir, use_fp16)
|
|
|
47 |
del configs
|
48 |
|
49 |
def list_avaliable_spks(self):
|
cosyvoice/cli/model.py
CHANGED
@@ -11,6 +11,7 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
|
|
14 |
import torch
|
15 |
import numpy as np
|
16 |
import threading
|
@@ -19,6 +20,10 @@ from contextlib import nullcontext
|
|
19 |
import uuid
|
20 |
from cosyvoice.utils.common import fade_in_out
|
21 |
|
|
|
|
|
|
|
|
|
22 |
|
23 |
class CosyVoiceModel:
|
24 |
|
@@ -66,10 +71,20 @@ class CosyVoiceModel:
|
|
66 |
llm_llm = torch.jit.load(llm_llm_model)
|
67 |
self.llm.llm = llm_llm
|
68 |
|
69 |
-
def load_trt(self):
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
75 |
with self.llm_context:
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
import os
|
15 |
import torch
|
16 |
import numpy as np
|
17 |
import threading
|
|
|
20 |
import uuid
|
21 |
from cosyvoice.utils.common import fade_in_out
|
22 |
|
23 |
+
try:
|
24 |
+
import tensorrt as trt
|
25 |
+
except ImportError:
|
26 |
+
...
|
27 |
|
28 |
class CosyVoiceModel:
|
29 |
|
|
|
71 |
llm_llm = torch.jit.load(llm_llm_model)
|
72 |
self.llm.llm = llm_llm
|
73 |
|
74 |
+
def load_trt(self, model_dir, use_fp16):
|
75 |
+
trt_file_name = 'estimator_fp16.plan' if use_fp16 else 'estimator_fp32.plan'
|
76 |
+
trt_file_path = os.path.join(model_dir, trt_file_name)
|
77 |
+
if not os.path.isfile(trt_file_path):
|
78 |
+
raise f"{trt_file_path} does not exist. Please use bin/export_trt.py to generate .plan file"
|
79 |
+
|
80 |
+
trt.init_libnvinfer_plugins(None, "")
|
81 |
+
logger = trt.Logger(trt.Logger.WARNING)
|
82 |
+
runtime = trt.Runtime(logger)
|
83 |
+
with open(trt_file_path, 'rb') as f:
|
84 |
+
serialized_engine = f.read()
|
85 |
+
engine = runtime.deserialize_cuda_engine(serialized_engine)
|
86 |
+
self.flow.decoder.estimator_context = engine.create_execution_context()
|
87 |
+
self.flow.decoder.estimator_engine = engine
|
88 |
|
89 |
def llm_job(self, text, prompt_text, llm_prompt_speech_token, llm_embedding, uuid):
|
90 |
with self.llm_context:
|
cosyvoice/flow/decoder.py
CHANGED
@@ -159,7 +159,7 @@ class ConditionalDecoder(nn.Module):
|
|
159 |
_type_: _description_
|
160 |
"""
|
161 |
|
162 |
-
t = self.time_embeddings(t)
|
163 |
t = self.time_mlp(t)
|
164 |
|
165 |
x = pack([x, mu], "b * t")[0]
|
|
|
159 |
_type_: _description_
|
160 |
"""
|
161 |
|
162 |
+
t = self.time_embeddings(t).to(t.dtype)
|
163 |
t = self.time_mlp(t)
|
164 |
|
165 |
x = pack([x, mu], "b * t")[0]
|
cosyvoice/flow/flow_matching.py
CHANGED
@@ -30,6 +30,9 @@ class ConditionalCFM(BASECFM):
|
|
30 |
# Just change the architecture of the estimator here
|
31 |
self.estimator = estimator
|
32 |
|
|
|
|
|
|
|
33 |
@torch.inference_mode()
|
34 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
35 |
"""Forward diffusion
|
@@ -50,7 +53,7 @@ class ConditionalCFM(BASECFM):
|
|
50 |
shape: (batch_size, n_feats, mel_timesteps)
|
51 |
"""
|
52 |
z = torch.randn_like(mu) * temperature
|
53 |
-
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device)
|
54 |
if self.t_scheduler == 'cosine':
|
55 |
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
56 |
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
@@ -71,6 +74,7 @@ class ConditionalCFM(BASECFM):
|
|
71 |
cond: Not used but kept for future purposes
|
72 |
"""
|
73 |
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
|
|
74 |
|
75 |
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
76 |
# Or in future might add like a return_all_steps flag
|
@@ -96,13 +100,30 @@ class ConditionalCFM(BASECFM):
|
|
96 |
|
97 |
return sol[-1]
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
if isinstance(self.estimator, trt):
|
102 |
assert self.training is False, 'tensorrt cannot be used in training'
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
else:
|
105 |
-
return self.estimator.forward
|
106 |
|
107 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
108 |
"""Computes diffusion loss
|
|
|
30 |
# Just change the architecture of the estimator here
|
31 |
self.estimator = estimator
|
32 |
|
33 |
+
self.estimator_context = None
|
34 |
+
self.estimator_engine = None
|
35 |
+
|
36 |
@torch.inference_mode()
|
37 |
def forward(self, mu, mask, n_timesteps, temperature=1.0, spks=None, cond=None):
|
38 |
"""Forward diffusion
|
|
|
53 |
shape: (batch_size, n_feats, mel_timesteps)
|
54 |
"""
|
55 |
z = torch.randn_like(mu) * temperature
|
56 |
+
t_span = torch.linspace(0, 1, n_timesteps + 1, device=mu.device, dtype=mu.dtype)
|
57 |
if self.t_scheduler == 'cosine':
|
58 |
t_span = 1 - torch.cos(t_span * 0.5 * torch.pi)
|
59 |
return self.solve_euler(z, t_span=t_span, mu=mu, mask=mask, spks=spks, cond=cond)
|
|
|
74 |
cond: Not used but kept for future purposes
|
75 |
"""
|
76 |
t, _, dt = t_span[0], t_span[-1], t_span[1] - t_span[0]
|
77 |
+
t = t.unsqueeze(dim=0)
|
78 |
|
79 |
# I am storing this because I can later plot it by putting a debugger here and saving it to a file
|
80 |
# Or in future might add like a return_all_steps flag
|
|
|
100 |
|
101 |
return sol[-1]
|
102 |
|
103 |
+
def forward_estimator(self, x, mask, mu, t, spks, cond):
|
104 |
+
if self.estimator_context is not None:
|
|
|
105 |
assert self.training is False, 'tensorrt cannot be used in training'
|
106 |
+
bs = x.shape[0]
|
107 |
+
hs = x.shape[1]
|
108 |
+
seq_len = x.shape[2]
|
109 |
+
# assert bs == 1 and hs == 80
|
110 |
+
ret = torch.empty_like(x)
|
111 |
+
self.estimator_context.set_input_shape("x", x.shape)
|
112 |
+
self.estimator_context.set_input_shape("mask", mask.shape)
|
113 |
+
self.estimator_context.set_input_shape("mu", mu.shape)
|
114 |
+
self.estimator_context.set_input_shape("t", t.shape)
|
115 |
+
self.estimator_context.set_input_shape("spks", spks.shape)
|
116 |
+
self.estimator_context.set_input_shape("cond", cond.shape)
|
117 |
+
bindings = [x.data_ptr(), mask.data_ptr(), mu.data_ptr(), t.data_ptr(), spks.data_ptr(), cond.data_ptr(), ret.data_ptr()]
|
118 |
+
|
119 |
+
for i in range(len(bindings)):
|
120 |
+
self.estimator_context.set_tensor_address(self.estimator_engine.get_tensor_name(i), bindings[i])
|
121 |
+
|
122 |
+
handle = torch.cuda.current_stream().cuda_stream
|
123 |
+
self.estimator_context.execute_async_v3(stream_handle=handle)
|
124 |
+
return ret
|
125 |
else:
|
126 |
+
return self.estimator.forward(x, mask, mu, t, spks, cond)
|
127 |
|
128 |
def compute_loss(self, x1, mask, mu, spks=None, cond=None):
|
129 |
"""Computes diffusion loss
|