File size: 5,625 Bytes
70bbc08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import streamlit as st
from time import time
from PIL import Image
from transformers import AutoModelForVision2Seq, AutoProcessor


def load_model_and_processor() -> None:
    """
    Load the model and processor.
    """
    st.session_state.model = AutoModelForVision2Seq.from_pretrained(
        st.session_state.model_id,
        cache_dir="models/huggingface",
    )
    st.session_state.model.eval()

    st.session_state.processor = AutoProcessor.from_pretrained(
        st.session_state.model_id,
        cache_dir="models/huggingface",
    )


def to_device() -> None:
    """
    Move the model to the selected device.
    """
    st.session_state.model.to(st.session_state.device.lower())


def scale_image(image: Image.Image, target_height: int = 500) -> Image.Image:
    """
    Scale an image to a target height while maintaining the aspect ratio.

    Parameters
    ----------
    image : Image.Image
        The image to scale.
    target_height : int, optional (default=500)
        The target height of the image.

    Returns
    -------
    Image.Image
        The scaled image.
    """
    width, height = image.size
    aspect_ratio = width / height
    target_width = int(aspect_ratio * target_height)
    return image.resize((target_width, target_height))


def upload_image() -> None:
    """
    Upload an image.
    """
    if st.session_state.file_uploader is not None:
        st.session_state.image = Image.open(st.session_state.file_uploader)


def inference() -> None:
    """
    Perform inference on an image and generate a caption.
    """
    start_time = time()
    outputs = st.session_state.processor(
        images=st.session_state.image,
        return_tensors="pt",
    )
    outputs = {k: v.to(st.session_state.device.lower()) for k, v in outputs.items()}
    logits = st.session_state.model.generate(
        **outputs,
        max_length=st.session_state.max_length,
        num_beams=st.session_state.num_beams,
    )
    caption = st.session_state.processor.decode(
        logits[0], skip_special_tokens=True
    )
    end_time = time()
    st.session_state.inference_time = round(end_time - start_time, 2)
    st.session_state.caption = caption


def main() -> None:
    """
    Main function for the Streamlit app.
    """
    if "model" not in st.session_state:
        st.session_state.model = AutoModelForVision2Seq.from_pretrained(
            "Salesforce/blip-image-captioning-base",
            cache_dir="models/huggingface",
        )
        st.session_state.model.eval().to("cpu")
    if "processor" not in st.session_state:
        st.session_state.processor = AutoProcessor.from_pretrained(
            "Salesforce/blip-image-captioning-base",
            cache_dir="models/huggingface",
        )
    if "image" not in st.session_state:
        st.session_state.image = None
    if "caption" not in st.session_state:
        st.session_state.caption = None
    if "inference_time" not in st.session_state:
        st.session_state.inference_time = 0.0

    # Set page configuration
    st.set_page_config(
        page_title="Image Captioning App",
        page_icon="📸",
        initial_sidebar_state="expanded",
    )

    # Set sidebar layout
    st.sidebar.header("Workspace")
    st.sidebar.file_uploader(
        "Upload an image",
        type=["jpg", "jpeg", "png"],
        accept_multiple_files=False,
        on_change=upload_image,
        key="file_uploader",
        help="Upload an image to generate a caption.",
    )
    st.sidebar.divider()
    st.sidebar.header("Settings")
    st.sidebar.selectbox(
        label="Model ID",
        options=["Salesforce/blip-image-captioning-base"],
        index=0,
        on_change=load_model_and_processor,
        key="model_id",
        help="The model to use for image captioning.",
    )
    st.sidebar.selectbox(
        label="Device",
        options=["CPU", "CUDA"],
        index=0,
        on_change=to_device,
        key="device",
        help="The device to use for inference.",
    )
    st.sidebar.number_input(
        label="Max length",
        min_value=32,
        max_value=128,
        value=128,
        step=1,
        key="max_length",
        help="The maximum length of the generated caption.",
    )
    st.sidebar.number_input(
        label="Number of beams",
        min_value=1,
        max_value=8,
        value=4,
        step=1,
        key="num_beams",
        help="The number of beams to use during decoding.",
    )

    # Set main layout
    st.markdown(
        """
        <h1 style='text-align: center;'>
            Image Captioning
        </h1>
        """,
        unsafe_allow_html=True,
    )
    st.divider()
    image_container = st.container(height=450)
    st.divider()
    col_1, col_2, col_3 = st.columns([1, 1, 2])
    resolution_display = col_1.empty()
    runtime_display = col_2.empty()
    caption_display = col_3.empty()

    # Display the image and generate a caption
    if st.session_state.image is not None:
        image_container.image(scale_image(st.session_state.image, target_height=400))

        resolution_display.metric(
            label="Image Resolution",
            value=f"{st.session_state.image.width}x{st.session_state.image.height}",
        )

        with st.spinner("Generating caption..."):
            inference()

        caption_display.text_area(
            label="Caption",
            value=st.session_state.caption,
        )
        runtime_display.metric(
            label="Inference Time",
            value=f"{st.session_state.inference_time}s",
        )


if __name__ == "__main__":
    main()