File size: 5,233 Bytes
04e7b78 9604b3c 2adecad 9604b3c 7400288 6d5fe23 362e959 6d5fe23 b92107e 6d5fe23 2adecad 72f30d6 b92a5dd 2adecad fb5842d 6d5fe23 fb5842d 6d5fe23 fb5842d 2adecad 6d5fe23 362e959 d3061d0 3922cca 6d5fe23 3922cca 6d5fe23 2adecad d3061d0 2adecad 6d5fe23 2adecad fb5842d 6d5fe23 2adecad 068f0da baad6f6 fb5842d 6d5fe23 fb5842d b92a5dd fb5842d b92a5dd fb5842d 6d5fe23 fb5842d b92a5dd b38e092 fb5842d 2adecad b38e092 fb5842d 6d5fe23 fb5842d b38e092 fb5842d b38e092 d3061d0 2adecad d3061d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
from transformers import pipeline
# Initialize the classifiers
zero_shot_classifier = pipeline("zero-shot-classification", model="tasksource/ModernBERT-base-nli")
nli_classifier = pipeline("text-classification", model="tasksource/ModernBERT-base-nli")
if False:
gr.load("models/answerdotai/ModernBERT-base").launch()
# Define examples
zero_shot_examples = [
["I absolutely love this product, it's amazing!", "positive, negative, neutral"],
["I need to buy groceries", "shopping, urgent tasks, leisure, philosophy"],
["The sun is very bright today", "weather, astronomy, complaints, poetry"],
["I love playing video games", "entertainment, sports, education, business"],
["The car won't start", "transportation, art, cooking, literature"]
]
nli_examples = [
["A man is sleeping on a couch", "The man is awake"],
["The restaurant's waiting area is bustling, but several tables remain vacant", "The establishment is at maximum capacity"],
["The child is methodically arranging blocks while frowning in concentration", "The kid is experiencing joy"],
["Dark clouds are gathering and the pavement shows scattered wet spots", "It's been raining heavily all day"],
["A German Shepherd is exhibiting defensive behavior towards someone approaching the property", "The animal making noise is feline"]
]
def process_input(text_input, labels_or_premise, mode):
if mode == "Zero-Shot Classification":
labels = [label.strip() for label in labels_or_premise.split(',')]
prediction = zero_shot_classifier(text_input, labels)
results = {label: score for label, score in zip(prediction['labels'], prediction['scores'])}
return results, ''
else: # NLI mode
pred= nli_classifier([{"text": text_input, "text_pair": labels_or_premise}],return_all_scores=True)[0]
results= {pred['label']:pred['score'] for pred in pred}
return results, ''
def update_interface(mode):
if mode == "Zero-Shot Classification":
return (
gr.update(
label="π·οΈ Categories",
placeholder="Enter comma-separated categories...",
value=zero_shot_examples[0][1]
),
gr.update(value=zero_shot_examples[0][0])
)
else:
return (
gr.update(
label="π Hypothesis",
placeholder="Enter a hypothesis to compare with the premise...",
value=nli_examples[0][1]
),
gr.update(value=nli_examples[0][0])
)
with gr.Blocks() as demo:
gr.Markdown("""
# tasksource/ModernBERT-nli demonstration
This spaces uses [tasksource/ModernBERT-base-nli](https://huggingface.co/tasksource/ModernBERT-base-nli),
fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
on tasksource classification tasks.
This NLI model achieves high accuracy on logical reasoning and long-context NLI, outperforming Llama 3 8B on ConTRoL and FOLIO.
""")
mode = gr.Radio(
["Zero-Shot Classification", "Natural Language Inference"],
label="Select Mode",
value="Zero-Shot Classification"
)
with gr.Column():
text_input = gr.Textbox(
label="βοΈ Input Text",
placeholder="Enter your text...",
lines=3,
value=zero_shot_examples[0][0] # Initial value
)
labels_or_premise = gr.Textbox(
label="π·οΈ Categories",
placeholder="Enter comma-separated categories...",
lines=2,
value=zero_shot_examples[0][1] # Initial value
)
submit_btn = gr.Button("Submit")
outputs = [
gr.Label(label="π Results"),
gr.Markdown(label="π Analysis", visible=False)
]
with gr.Column(variant="panel") as zero_shot_examples_panel:
gr.Examples(
examples=zero_shot_examples,
inputs=[text_input, labels_or_premise],
label="Zero-Shot Classification Examples",
headers=["Input Text", "Categories"] # Add headers
)
with gr.Column(variant="panel") as nli_examples_panel:
gr.Examples(
examples=nli_examples,
inputs=[text_input, labels_or_premise],
label="Natural Language Inference Examples",
headers=["Premise", "Hypothesis"] # Add headers
)
def update_visibility(mode):
return (
gr.update(visible=(mode == "Zero-Shot Classification")),
gr.update(visible=(mode == "Natural Language Inference"))
)
mode.change(
fn=update_interface,
inputs=[mode],
outputs=[labels_or_premise, text_input]
)
mode.change(
fn=update_visibility,
inputs=[mode],
outputs=[zero_shot_examples_panel, nli_examples_panel]
)
submit_btn.click(
fn=process_input,
inputs=[text_input, labels_or_premise, mode],
outputs=outputs
)
if __name__ == "__main__":
demo.launch() |