semantic_search / app.py
taskswithcode
Fixes
580406b
import time
import sys
import streamlit as st
import string
from io import StringIO
import pdb
import json
from twc_embeddings import HFModel,SimCSEModel,SGPTModel,CausalLMModel,SGPTQnAModel
from twc_openai_search import OpenAIQnAModel
import torch
import requests
import socket
MAX_INPUT = 100
SEM_SIMILARITY="1"
DOC_RETRIEVAL="2"
CLUSTERING="3"
use_case = {"1":"Finding similar phrases/sentences","2":"Retrieving semantically matching information to a query. It may not be a factual match","3":"Clustering"}
use_case_url = {"1":"https://huggingface.co/spaces/taskswithcode/semantic_similarity","2":"https://huggingface.co/spaces/taskswithcode/semantic_search","3":"https://huggingface.co/spaces/taskswithcode/semantic_clustering"}
from transformers import BertTokenizer, BertForMaskedLM
APP_NAME = "hf/semantic_search"
INFO_URL = "https://www.taskswithcode.com/stats/"
def get_views(action):
ret_val = 0
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
if ("view_count" not in st.session_state):
try:
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
res = requests.post(INFO_URL, json = app_info).json()
print(res)
data = res["count"]
except:
data = 0
ret_val = data
st.session_state["view_count"] = data
else:
ret_val = st.session_state["view_count"]
if (action != "init"):
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
res = requests.post(INFO_URL, json = app_info).json()
return "{:,}".format(ret_val)
def construct_model_info_for_display(model_names):
options_arr = []
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/><i>The selected models satisfy one or more of the following (1) state-of-the-art (2) the most downloaded models on Hugging Face (3) Large Language Models (e.g. GPT-3)</i></div>"
markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
for node in model_names:
options_arr .append(node["name"])
if (node["mark"] == "True"):
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
if ("Note" in node):
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\">&nbsp;&nbsp;&nbsp;&nbsp;{node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>"
limit = "{:,}".format(MAX_INPUT)
markdown_str += f"<div style=\"font-size:12px; color: #9f9f9f; text-align: left\">•&nbsp;User uploaded file has a maximum limit of {limit} sentences.</div>"
return options_arr,markdown_str
st.set_page_config(page_title='TWC - Compare popular/state-of-the-art models for semantic search using sentence embeddings', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
menu_items={
'About': 'This app was created by taskswithcode. http://taskswithcode.com'
})
col,pad = st.columns([85,15])
with col:
st.image("long_form_logo_with_icon.png")
@st.experimental_memo
def load_model(model_name,model_class,load_model_name):
try:
ret_model = None
obj_class = globals()[model_class]
ret_model = obj_class()
ret_model.init_model(load_model_name)
assert(ret_model is not None)
except Exception as e:
st.error("Unable to load model:" + model_name + " " + load_model_name + " " + str(e))
pass
return ret_model
@st.experimental_memo
def cached_compute_similarity(input_file_name,sentences,_model,model_name,main_index):
texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False)
results = _model.output_results(None,texts,embeddings,main_index)
return results
def uncached_compute_similarity(input_file_name,sentences,_model,model_name,main_index):
with st.spinner('Computing vectors for sentences'):
texts,embeddings = _model.compute_embeddings(input_file_name,sentences,is_file=False)
results = _model.output_results(None,texts,embeddings,main_index)
#st.success("Similarity computation complete")
return results
DEFAULT_HF_MODEL = "sentence-transformers/paraphrase-MiniLM-L6-v2"
def get_model_info(model_names,model_name):
for node in model_names:
if (model_name == node["name"]):
return node,model_name
return get_model_info(model_names,DEFAULT_HF_MODEL)
def run_test(model_names,model_name,input_file_name,sentences,display_area,main_index,user_uploaded,custom_model):
display_area.text("Loading model:" + model_name)
#Note. model_name may get mapped to new name in the call below for custom models
orig_model_name = model_name
model_info,model_name = get_model_info(model_names,model_name)
if (model_name != orig_model_name):
load_model_name = orig_model_name
else:
load_model_name = model_info["model"]
if ("Note" in model_info):
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
display_area.write(fail_link)
if (user_uploaded and "custom_load" in model_info and model_info["custom_load"] == "False"):
fail_link = f"{model_info['Note']} [link]({model_info['alt_url']})"
display_area.write(fail_link)
return {"error":fail_link}
model = load_model(model_name,model_info["class"],load_model_name)
display_area.text("Model " + model_name + " load complete")
try:
if (user_uploaded):
results = uncached_compute_similarity(input_file_name,sentences,model,model_name,main_index)
else:
display_area.text("Computing vectors for sentences")
results = cached_compute_similarity(input_file_name,sentences,model,model_name,main_index)
display_area.text("Similarity computation complete")
return results
except Exception as e:
st.error("Some error occurred during prediction" + str(e))
st.stop()
return {}
def display_results(orig_sentences,main_index,results,response_info,app_mode,model_name):
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
main_sent += f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">Showing results for model:&nbsp;<b>{model_name}</b></div>"
score_text = "cosine distance" if app_mode == SEM_SIMILARITY else "cosine distance/score"
pivot_name = "main sentence" if app_mode == SEM_SIMILARITY else "query"
main_sent += f"<div style=\"font-size:14px; color: #6f6f6f; text-align: left\">Results sorted by {score_text}. Closest to furthest away from {pivot_name}</div>"
pivot_name = pivot_name[0].upper() + pivot_name[1:]
main_sent += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>{pivot_name}:</b>&nbsp;&nbsp;{orig_sentences[main_index]}</div>"
body_sent = []
download_data = {}
first = True
for key in results:
if (app_mode == DOC_RETRIEVAL and first):
first = False
continue
index = orig_sentences.index(key) + 1
body_sent.append(f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\">{index}]&nbsp;{key}&nbsp;&nbsp;&nbsp;<b>{results[key]:.2f}</b></div>")
download_data[key] = f"{results[key]:.2f}"
main_sent = main_sent + "\n" + '\n'.join(body_sent)
st.markdown(main_sent,unsafe_allow_html=True)
st.session_state["download_ready"] = json.dumps(download_data,indent=4)
get_views("submit")
def init_session():
if ("model_name" not in st.session_state):
st.session_state["model_name"] = "ss_test"
st.session_state["download_ready"] = None
st.session_state["model_name"] = "ss_test"
st.session_state["main_index"] = 1
st.session_state["file_name"] = "default"
else:
print("Skipping init session")
def app_main(app_mode,example_files,model_name_files):
init_session()
with open(example_files) as fp:
example_file_names = json.load(fp)
with open(model_name_files) as fp:
model_names = json.load(fp)
curr_use_case = use_case[app_mode].split(".")[0]
st.markdown("<h5 style='text-align: center;'>Compare popular/state-of-the-art models for semantic search using sentence embeddings</h5>", unsafe_allow_html=True)
st.markdown(f"<p style='font-size:14px; color: #4f4f4f; text-align: center'><i>Or compare your own model with state-of-the-art/popular models</p>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Use cases for sentence embeddings<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;<a href=\'{use_case_url['1']}\' target='_blank'>{use_case['1']}</a><br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['2']}<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;<a href=\'{use_case_url['3']}\' target='_blank'>{use_case['3']}</a><br/><i>This app illustrates <b>'{curr_use_case}'</b> use case</i></div>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views:&nbsp;{get_views('init')}</div>", unsafe_allow_html=True)
try:
with st.form('twc_form'):
step1_line = "Upload text file(one sentence in a line) or choose an example text file below"
if (app_mode == DOC_RETRIEVAL):
step1_line += ". The first line is treated as the query"
uploaded_file = st.file_uploader(step1_line, type=".txt")
selected_file_index = st.selectbox(label=f'Example files ({len(example_file_names)})',
options = list(dict.keys(example_file_names)), index=0, key = "twc_file")
st.write("")
options_arr,markdown_str = construct_model_info_for_display(model_names)
selection_label = 'Select Model'
selected_model = st.selectbox(label=selection_label,
options = options_arr, index=0, key = "twc_model")
st.write("")
custom_model_selection = st.text_input("Model not listed above? Type any Hugging Face semantic search model name ", "",key="custom_model")
hf_link_str = "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><a href='https://huggingface.co/models?pipeline_tag=sentence-similarity' target = '_blank'>List of Hugging Face semantic search models</a><br/><br/><br/></div>"
st.markdown(hf_link_str, unsafe_allow_html=True)
if (app_mode == SEM_SIMILARITY):
main_index = st.number_input('Enter index of sentence in file to make it the main sentence',value=1,min_value = 1)
else:
main_index = 1
st.write("")
submit_button = st.form_submit_button('Run')
input_status_area = st.empty()
display_area = st.empty()
if submit_button:
start = time.time()
if uploaded_file is not None:
st.session_state["file_name"] = uploaded_file.name
sentences = StringIO(uploaded_file.getvalue().decode("utf-8")).read()
else:
st.session_state["file_name"] = example_file_names[selected_file_index]["name"]
sentences = open(example_file_names[selected_file_index]["name"]).read()
sentences = sentences.split("\n")[:-1]
if (len(sentences) < main_index):
main_index = len(sentences)
st.info("Selected sentence index is larger than number of sentences in file. Truncating to " + str(main_index))
if (len(sentences) > MAX_INPUT):
st.info(f"Input sentence count exceeds maximum sentence limit. First {MAX_INPUT} out of {len(sentences)} sentences chosen")
sentences = sentences[:MAX_INPUT]
if (len(custom_model_selection) != 0):
run_model = custom_model_selection
else:
run_model = selected_model
st.session_state["model_name"] = selected_model
st.session_state["main_index"] = main_index
results = run_test(model_names,run_model,st.session_state["file_name"],sentences,display_area,main_index - 1,(uploaded_file is not None),(len(custom_model_selection) != 0))
display_area.empty()
with display_area.container():
if ("error" in results):
st.error(results["error"])
else:
device = 'GPU' if torch.cuda.is_available() else 'CPU'
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for {len(sentences)} sentences"
if (len(custom_model_selection) != 0):
st.info("Custom model overrides model selection in step 2 above. So please clear the custom model text box to choose models from step 2")
display_results(sentences,main_index - 1,results,response_info,app_mode,run_model)
#st.json(results)
st.download_button(
label="Download results as json",
data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
disabled = False if st.session_state["download_ready"] != None else True,
file_name= (st.session_state["model_name"] + "_" + str(st.session_state["main_index"]) + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".json").replace("/","_"),
mime='text/json',
key ="download"
)
except Exception as e:
st.error("Some error occurred during loading" + str(e))
st.stop()
st.markdown(markdown_str, unsafe_allow_html=True)
if __name__ == "__main__":
#print("comand line input:",len(sys.argv),str(sys.argv))
#app_main(sys.argv[1],sys.argv[2],sys.argv[3])
#app_main("1","sim_app_examples.json","sim_app_models.json")
app_main("2","doc_app_examples.json","doc_app_models.json")