Spaces:
Sleeping
Sleeping
File size: 15,340 Bytes
29dd018 c5522cd 4c37639 0dda2a1 4005ffd 940df6c 0dda2a1 7a52fdd 9a054bf 937bcc4 9a054bf ac9adab b352af8 0dda2a1 940df6c 0dda2a1 40d15f0 0dda2a1 88d2fdc 47650a0 c4a2d1f c4684f9 40d15f0 0dda2a1 a1f9f6b c4a2d1f e52ad04 0dda2a1 064943c 0dda2a1 940df6c 4c37639 3fa5f95 0dda2a1 3fa5f95 29dd018 0dda2a1 e6cb545 0dda2a1 39cf044 0dda2a1 39cf044 d3176f4 e6cb545 0dda2a1 0f88fd2 e6cb545 9a054bf 0dda2a1 e6cb545 9a054bf 4f74893 0dda2a1 9a054bf 0dda2a1 7a52fdd 4f74893 7a52fdd 0dda2a1 074d6fc c178b42 074d6fc 3fa5f95 320eff2 074d6fc 064943c 074d6fc 064943c 074d6fc 064943c 074d6fc d2fce7d 3fa5f95 0dda2a1 30f4617 c01e475 3fa5f95 c01e475 f0d6550 9f24b08 f0d6550 c01e475 0dda2a1 80cfec3 3fa5f95 9f24b08 c01e475 6d8505d 3fa5f95 c01e475 9f24b08 3fa5f95 c01e475 9f24b08 c01e475 9f24b08 c01e475 0dda2a1 d3176f4 7a52fdd d3176f4 0f88fd2 d3176f4 0dda2a1 3fa5f95 d3176f4 7a52fdd 0dda2a1 9a054bf 6e09a79 9a054bf 8144327 9a054bf 3fa5f95 9a054bf 572d835 3fa5f95 27f5d4b d3176f4 7a52fdd 940df6c d912ba1 27f5d4b 3fa5f95 940df6c 27f5d4b 940df6c 27f5d4b 074d6fc 217fc47 3fa5f95 074d6fc 3fa5f95 7a52fdd 3fa5f95 217fc47 9a054bf 3fa5f95 9a054bf 3fa5f95 572d835 7a52fdd 217fc47 d912ba1 7a52fdd d3176f4 27f5d4b 0dda2a1 064943c 40d15f0 3fa5f95 40d15f0 064943c 8c0f543 3fa5f95 064943c c4a2d1f 3fa5f95 c4684f9 17050fe fce68f1 2f18daa 4a2e5ad 2f18daa c4684f9 fce68f1 4a2e5ad 29dd018 c4684f9 fce68f1 3fa5f95 c4684f9 c4a2d1f c4684f9 88d2fdc 4a38803 80cfec3 074d6fc e6a7560 9245bf5 d3176f4 ac9adab 3fa5f95 d9c4277 2c6b8d9 d3176f4 2c6b8d9 3fa5f95 2c6b8d9 80cfec3 2c6b8d9 d3176f4 937bcc4 d3176f4 3fa5f95 937bcc4 a1f9f6b ed7063b a1f9f6b 320eff2 4c37639 9245bf5 4c37639 29dd018 4c37639 29dd018 d3176f4 4c37639 29dd018 4c37639 9245bf5 4c37639 29dd018 4c37639 a8a5b30 da75ad8 ed7063b da75ad8 b9076ac ed7063b b9076ac ed7063b da75ad8 a8a5b30 80cfec3 ea8ad26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
import pymupdf
import string
from concurrent.futures import ThreadPoolExecutor
from langchain_core.runnables import RunnablePassthrough, RunnableLambda
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_qdrant import QdrantVectorStore
from langchain_qdrant import RetrievalMode
from langchain_core.prompts.chat import ChatPromptTemplate
from langchain_core.prompts import PromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain.memory import ChatMessageHistory
from pandasai import SmartDataframe
from langchain_core.chat_history import BaseChatMessageHistory
from langchain_community.document_loaders import YoutubeLoader
from langchain.docstore.document import Document
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_qdrant import FastEmbedSparse
from supabase.client import create_client
from qdrant_client import QdrantClient
from langchain_groq import ChatGroq
from pdf2image import convert_from_bytes
import numpy as np
import easyocr
from bs4 import BeautifulSoup
from urllib.parse import urlparse, urljoin
from supabase import create_client
from dotenv import load_dotenv
import os
import base64
import time
import requests
load_dotenv("secrets.env")
client = create_client(os.environ["SUPABASE_URL"], os.environ["SUPABASE_KEY"])
qdrantClient = QdrantClient(url=os.environ["QDRANT_URL"], api_key=os.environ["QDRANT_API_KEY"])
model_kwargs = {"device": "cuda"}
encode_kwargs = {"normalize_embeddings": True}
vectorEmbeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
reader = easyocr.Reader(['en'], gpu=True, model_storage_directory="/app/EasyOCRModels")
sparseEmbeddings = FastEmbedSparse(model="Qdrant/BM25", threads=20, parallel=0)
prompt = """
INSTRUCTIONS:
=====================================
### Role
**Primary Function**: You are an AI chatbot designed to provide accurate and efficient assistance to users based on provided context data. Your responses must be reliable, friendly, and directly address user inquiries or issues. Always clarify any unclear questions, and conclude responses positively.
### Constraints
1. **No Data Disclosure**: Never reveal access to training data or any context explicitly.
2. **Maintaining Focus**: Politely redirect any off-topic conversations back to relevant issues without breaking character.
3. **Exclusive Reliance on Context Data**: Base all answers strictly on the provided context data. If the context doesn’t cover the query, use a fallback response. Always maintain a third-person perspective.
4. **Restrictive Role Focus**: Do not engage in tasks or answer questions unrelated to your role or context data.
Ensure all instructions are strictly followed. Responses must be meaningful and concise, within 512 words. Make sure the user is always happy and satisfied with the outputs you return.
CONTEXT:
=====================================
{context}
======================================
QUESTION:
=====================================
{question}
CHAT HISTORY:
=====================================
{chatHistory}
NOTE: Generate responses directly without using phrases like "Response:" or "Answer:". NEVER mention the user about usage of any context to generate an answer.
"""
prompt = ChatPromptTemplate.from_template(prompt)
chatHistoryStore = dict()
class FollowUps(BaseModel):
q1: str = Field(description="First Follow-up Question")
q2: str = Field(description="Second Follow-up Question")
q3: str = Field(description="Third Follow-up Question")
followUpPrompt = """
You are an expert chatbot at framing follow up questions using some given text such that their answers can be found in the text itself and have been given the task of doing the same. Make sure that the questions are good quality and not too long in length. Frame appropriate and meaningful questions out of the given text and DO NOT mention the usage of any text in the questions. Also, if no the given text says NO CONTEXT FOUND, please return an empty string for each question asked.
\n{format_instructions}
\n{context}
"""
jsonParser = JsonOutputParser(pydantic_object=FollowUps)
followUpPrompt = PromptTemplate(
template=followUpPrompt,
input_variables=["context"],
partial_variables={"format_instructions": jsonParser.get_format_instructions()},
)
def createUser(user_id: str, username: str, email: str) -> dict:
userData = client.table("ConversAI_UserInfo").select("*").execute().data
if username not in [userData[x]["username"] for x in range(len(userData))]:
try:
client.table("ConversAI_UserInfo").insert(
{"user_id": user_id, "username": username, "email": email}).execute()
client.table("ConversAI_UserConfig").insert({"user_id": username}).execute()
res = {
"code": 200,
"message": "User Setup Successful"
}
except Exception as e:
res = {
"code": 409,
"message": "Email already exists",
}
return res
else:
return {
"code": 409,
"message": "Username already exists"
}
def createTable(tablename: str):
global vectorEmbeddings
global sparseEmbeddings
qdrant = QdrantVectorStore.from_documents(
documents=[],
embedding=vectorEmbeddings,
sparse_embedding=sparseEmbeddings,
url=os.environ["QDRANT_URL"],
prefer_grpc=True,
api_key=os.environ["QDRANT_API_KEY"],
collection_name=tablename,
force_recreate=True,
retrieval_mode=RetrievalMode.HYBRID
)
return {
"output": "SUCCESS"
}
def cleanText(text: str):
text = text.replace("\n", " ")
text = text.translate(str.maketrans('', '', string.punctuation.replace(".", "")))
return text
def addDocuments(texts: list[tuple[str]], vectorstore: str):
global vectorEmbeddings
global sparseEmbeddings
splitter = RecursiveCharacterTextSplitter(
chunk_size=1500,
chunk_overlap=250,
add_start_index=True
)
sources = [textTuple[1] for textTuple in texts]
texts = [textTuple[0].replace("\n", " ") for textTuple in texts]
texts = [text.translate(str.maketrans('', '', string.punctuation.replace(".", ""))) for text in texts]
texts = [Document(page_content=text, metadata={"source": source}) for text, source in zip(texts, sources)]
documents = splitter.split_documents(texts)
vectorstore = QdrantVectorStore.from_documents(
documents=documents,
embedding=vectorEmbeddings,
sparse_embedding=sparseEmbeddings,
url=os.environ["QDRANT_URL"],
prefer_grpc=True,
api_key=os.environ["QDRANT_API_KEY"],
collection_name=vectorstore,
force_recreate=True,
retrieval_mode=RetrievalMode.HYBRID
)
return {
"output": "SUCCESS"
}
def format_docs(docs: str):
global sources
global tempContext
sources = []
context = ""
for doc in docs:
context += f"{doc.page_content}\n\n\n"
source = doc.metadata
source = source["source"]
sources.append(source)
if context == "":
context = "No context found"
else:
pass
sources = list(set(sources))
tempContext = context
return context
def get_session_history(session_id: str) -> BaseChatMessageHistory:
if session_id not in chatHistoryStore:
chatHistoryStore[session_id] = ChatMessageHistory()
return chatHistoryStore[session_id]
def trimMessages(chain_input):
for storeName in chatHistoryStore:
messages = chatHistoryStore[storeName].messages
if len(messages) <= 1:
pass
else:
chatHistoryStore[storeName].clear()
for message in messages[-1:]:
chatHistoryStore[storeName].add_message(message)
return True
def answerQuery(query: str, vectorstore: str, llmModel: str = "llama-3.1-70b-versatile") -> str:
global prompt
global client
global sources
global jsonParser
global tempContext
global followUpPrompt
global vectorEmbeddings
global sparseEmbeddings
vectorStoreName = vectorstore
vectorstore = QdrantVectorStore.from_existing_collection(
embedding=vectorEmbeddings,
sparse_embedding=sparseEmbeddings,
collection_name=vectorstore,
url=os.environ["QDRANT_URL"],
api_key=os.environ["QDRANT_API_KEY"],
retrieval_mode=RetrievalMode.HYBRID
)
retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 4, "score_threshold": None})
baseChain = (
{"context": RunnableLambda(lambda x: x["question"]) | retriever | RunnableLambda(format_docs),
"question": RunnableLambda(lambda x: x["question"]),
"chatHistory": RunnableLambda(lambda x: x["chatHistory"])}
| prompt
| ChatGroq(model_name=llmModel, temperature=0.75, max_tokens=512)
| StrOutputParser()
)
messageChain = RunnableWithMessageHistory(
baseChain,
get_session_history,
input_messages_key="question",
history_messages_key="chatHistory"
)
chain = RunnablePassthrough.assign(messages_trimmed=trimMessages) | messageChain
followUpChain = followUpPrompt | ChatGroq(model_name="llama-3.1-70b-versatile", temperature=0) | jsonParser
output = chain.invoke(
{"question": query},
{"configurable": {"session_id": vectorStoreName}}
)
followUpQuestions = followUpChain.invoke({"context": tempContext})
return {
"output": output,
"followUpQuestions": followUpQuestions,
"sources": sources
}
def deleteTable(tableName: str):
try:
global qdrantClient
qdrantClient.delete_collection(collection_name=tableName)
return {
"output": "SUCCESS"
}
except Exception as e:
return {
"error": e
}
def listTables(username: str):
try:
global qdrantClient
qdrantCollections = qdrantClient.get_collections()
return {
"output": list(filter(lambda x: True if x.split("$")[1] == username else False,
[x.name for x in qdrantCollections.collections]))
}
except Exception as e:
return {
"error": e
}
def getLinks(url: str, timeout=30):
start = time.time()
def getLinksFromPage(url: str) -> list:
response = requests.get(url)
soup = BeautifulSoup(response.content, "lxml")
anchors = soup.find_all("a")
links = []
for anchor in anchors:
if "href" in anchor.attrs:
if urlparse(anchor.attrs["href"]).netloc == urlparse(url).netloc:
links.append(anchor.attrs["href"])
elif not anchor.attrs["href"].startswith(("//", "file", "javascript", "tel", "mailto", "http")):
links.append(urljoin(url + "/", anchor.attrs["href"]))
else:
pass
links = [link for link in links if "#" not in link]
links = list(set(links))
else:
continue
return links
links = getLinksFromPage(url)
uniqueLinks = set()
for link in links:
now = time.time()
if now - start > timeout:
break
else:
uniqueLinks = uniqueLinks.union(set(getLinksFromPage(link)))
return list(set([x[:len(x) - 1] if x[-1] == "/" else x for x in uniqueLinks]))
def getTextFromImagePDF(pdfBytes):
def getText(image):
global reader
text = "\n".join([text[1] for text in reader.readtext(np.array(image), paragraph=True)])
return cleanText(text = text)
allImages = convert_from_bytes(pdfBytes)
texts = [getText(image) for image in allImages]
return {x + 1: y for x, y in enumerate(texts)}
def getTranscript(urls: str):
texts = []
for url in set(urls):
try:
loader = YoutubeLoader.from_youtube_url(
url, add_video_info=False
)
doc = " ".join([x.page_content for x in loader.load()])
texts.append(cleanText(text = doc))
except:
doc = ""
texts.append(doc)
return {x: y for x, y in zip(urls, texts)}
def analyzeData(query, dataframe):
query += ". In case, you are to plot a chart, make sure the x-axis labels are 90 degree rotated"
llm = ChatGroq(name="llama-3.1-8b-instant")
df = SmartDataframe(dataframe, config={"llm": llm, "verbose": False})
response = df.chat(query)
if os.path.isfile(response):
with open(response, "rb") as file:
b64string = base64.b64encode(file.read()).decode("utf-8", errors = "replace")
return f"data:image/png;base64,{b64string}"
else:
return response
def extractTextFromPage(page):
return cleanText(text = page.get_text())
def extractTextFromPdf(pdf_path):
doc = pymupdf.open(pdf_path)
pages = [doc.load_page(i) for i in range(len(doc))]
with ThreadPoolExecutor() as executor:
texts = list(executor.map(extractTextFromPage, pages))
doc.close()
return {x + 1: y for x, y in enumerate(texts)}
def extractTextFromUrl(url):
response = requests.get(url)
response.raise_for_status()
html = response.text
soup = BeautifulSoup(html, 'lxml')
return cleanText(text = soup.get_text(separator=' ', strip=True))
def extractTextFromUrlList(urls):
with ThreadPoolExecutor() as executor:
texts = list(executor.map(extractTextFromUrl, urls))
return {x: y for x, y in zip(urls, texts)}
def encodeToBase64(dct: dict):
for key in dct:
if type(dct[key]) == str:
dct[key] = base64.b64encode(dct[key].encode("utf-8", errors = "replace")).decode("utf-8", errors = "replace")
elif type(dct[key]) == dict:
dct[key] = encodeToBase64(dct[key])
return dct
def decodeBase64(dct: dict):
if type(dct["output"]) == str:
dct["output"] = base64.b64decode(dct["output"].encode("utf-8", errors = "replace")).decode("utf-8", errors = "replace")
else:
for key in dct["output"]:
dct["output"][key] = base64.b64decode(dct["output"][key].encode("utf-8", errors = "replace")).decode("utf-8", errors = "replace")
return dct
def createDataSourceName(sourceName):
sources = [x["dataSourceName"] for x in client.table("ConversAI_ChatbotDataSources").select("dataSourceName").execute().data]
if sourceName not in sources:
return sourceName
else:
i = 1
while True:
sourceName = sourceName + "-" + str(i)
return createDataSourceName(sourceName)
def trackUsage(vectorstore: str, endpoint: str):
username, chatbotName = vectorstore.split("$")[1], vectorstore.split("$")[2]
client.table("ConversAI_ActivityLog").insert({"username": username, "chatbotName": chatbotName, "endpointUsed": endpoint}).execute() |