Spaces:
Sleeping
Sleeping
""" | |
Worker, modify from https://github.com/lllyasviel/Fooocus/blob/main/modules/async_worker.py | |
""" | |
import copy | |
import os | |
import random | |
import time | |
from typing import List | |
import logging | |
import numpy as np | |
import torch | |
from fooocusapi.models.common.image_meta import image_parse | |
from modules.patch import PatchSettings, patch_settings, patch_all | |
from modules.flags import Performance | |
from fooocusapi.utils.file_utils import save_output_file | |
from fooocusapi.models.common.task import ( | |
GenerationFinishReason, | |
ImageGenerationResult | |
) | |
from fooocusapi.utils.logger import logger | |
from fooocusapi.task_queue import ( | |
QueueTask, | |
TaskQueue, | |
TaskOutputs | |
) | |
patch_all() | |
worker_queue: TaskQueue | None = None | |
last_model_name = None | |
def process_stop(): | |
"""Stop process""" | |
import ldm_patched.modules.model_management | |
ldm_patched.modules.model_management.interrupt_current_processing() | |
def task_schedule_loop(): | |
"""Task schedule loop""" | |
while True: | |
if len(worker_queue.queue) == 0: | |
time.sleep(0.05) | |
continue | |
current_task = worker_queue.queue[0] | |
if current_task.start_mills == 0: | |
process_generate(current_task) | |
def blocking_get_task_result(job_id: str) -> List[ImageGenerationResult]: | |
""" | |
Get task result, when async_task is false | |
:param job_id: | |
:return: | |
""" | |
waiting_sleep_steps: int = 0 | |
waiting_start_time = time.perf_counter() | |
while not worker_queue.is_task_finished(job_id): | |
if waiting_sleep_steps == 0: | |
logger.std_info(f"[Task Queue] Waiting for task finished, job_id={job_id}") | |
delay = 0.05 | |
time.sleep(delay) | |
waiting_sleep_steps += 1 | |
if waiting_sleep_steps % int(10 / delay) == 0: | |
waiting_time = time.perf_counter() - waiting_start_time | |
logger.std_info(f"[Task Queue] Already waiting for {round(waiting_time, 1)} seconds, job_id={job_id}") | |
task = worker_queue.get_task(job_id, True) | |
return task.task_result | |
def process_generate(async_task: QueueTask): | |
"""Generate image""" | |
try: | |
import modules.default_pipeline as pipeline | |
except Exception as e: | |
logger.std_error(f'[Task Queue] Import default pipeline error: {e}') | |
if not async_task.is_finished: | |
worker_queue.finish_task(async_task.job_id) | |
async_task.set_result([], True, str(e)) | |
logger.std_error(f"[Task Queue] Finish task with error, seq={async_task.job_id}") | |
return [] | |
import modules.flags as flags | |
import modules.core as core | |
import modules.inpaint_worker as inpaint_worker | |
import modules.config as config | |
import modules.constants as constants | |
import extras.preprocessors as preprocessors | |
import extras.ip_adapter as ip_adapter | |
import extras.face_crop as face_crop | |
import ldm_patched.modules.model_management as model_management | |
from modules.util import ( | |
remove_empty_str, HWC3, resize_image, | |
get_image_shape_ceil, set_image_shape_ceil, | |
get_shape_ceil, resample_image, erode_or_dilate, | |
get_enabled_loras, parse_lora_references_from_prompt, apply_wildcards, | |
remove_performance_lora | |
) | |
from modules.upscaler import perform_upscale | |
from extras.expansion import safe_str | |
from extras.censor import default_censor | |
from modules.sdxl_styles import ( | |
apply_style, get_random_style, | |
fooocus_expansion, apply_arrays, random_style_name | |
) | |
pid = os.getpid() | |
outputs = TaskOutputs(async_task) | |
results = [] | |
def refresh_seed(seed_string: int | str | None) -> int: | |
""" | |
Refresh and check seed number. | |
:params seed_string: seed, str or int. None means random | |
:return: seed number | |
""" | |
if seed_string is None or seed_string == -1: | |
return random.randint(constants.MIN_SEED, constants.MAX_SEED) | |
try: | |
seed_value = int(seed_string) | |
if constants.MIN_SEED <= seed_value <= constants.MAX_SEED: | |
return seed_value | |
except ValueError: | |
pass | |
return random.randint(constants.MIN_SEED, constants.MAX_SEED) | |
def progressbar(_, number, text): | |
"""progress bar""" | |
logger.std_info(f'[Fooocus] {text}') | |
outputs.append(['preview', (number, text, None)]) | |
def yield_result(_, images, tasks, extension='png', | |
blockout_nsfw=False, censor=True): | |
""" | |
Yield result | |
:param _: async task object | |
:param images: list for generated image | |
:param tasks: the image was generated one by one, when image number is not one, it will be a task list | |
:param extension: extension for saved image | |
:param blockout_nsfw: blockout nsfw image | |
:param censor: censor image | |
:return: | |
""" | |
if not isinstance(images, list): | |
images = [images] | |
if censor and (config.default_black_out_nsfw or black_out_nsfw): | |
images = default_censor(images) | |
results = [] | |
for index, im in enumerate(images): | |
if async_task.req_param.save_name == '': | |
image_name = f"{async_task.job_id}-{str(index)}" | |
else: | |
image_name = f"{async_task.req_param.save_name}-{str(index)}" | |
if len(tasks) == 0: | |
img_seed = -1 | |
img_meta = {} | |
else: | |
img_seed = tasks[index]['task_seed'] | |
img_meta = image_parse( | |
async_tak=async_task, | |
task=tasks[index]) | |
img_filename = save_output_file( | |
img=im, | |
image_name=image_name, | |
image_meta=img_meta, | |
extension=extension) | |
results.append(ImageGenerationResult( | |
im=img_filename, | |
seed=str(img_seed), | |
finish_reason=GenerationFinishReason.success)) | |
async_task.set_result(results, False) | |
worker_queue.finish_task(async_task.job_id) | |
logger.std_info(f"[Task Queue] Finish task, job_id={async_task.job_id}") | |
outputs.append(['results', images]) | |
pipeline.prepare_text_encoder(async_call=True) | |
try: | |
logger.std_info(f"[Task Queue] Task queue start task, job_id={async_task.job_id}") | |
# clear memory | |
global last_model_name | |
if last_model_name is None: | |
last_model_name = async_task.req_param.base_model_name | |
if last_model_name != async_task.req_param.base_model_name: | |
model_management.cleanup_models() # key1 | |
model_management.unload_all_models() | |
model_management.soft_empty_cache() # key2 | |
last_model_name = async_task.req_param.base_model_name | |
worker_queue.start_task(async_task.job_id) | |
execution_start_time = time.perf_counter() | |
# Transform parameters | |
params = async_task.req_param | |
prompt = params.prompt | |
negative_prompt = params.negative_prompt | |
style_selections = params.style_selections | |
performance_selection = Performance(params.performance_selection) | |
aspect_ratios_selection = params.aspect_ratios_selection | |
image_number = params.image_number | |
save_metadata_to_images = params.save_meta | |
metadata_scheme = params.meta_scheme | |
save_extension = params.save_extension | |
save_name = params.save_name | |
image_seed = refresh_seed(params.image_seed) | |
read_wildcards_in_order = False | |
sharpness = params.sharpness | |
guidance_scale = params.guidance_scale | |
base_model_name = params.base_model_name | |
refiner_model_name = params.refiner_model_name | |
refiner_switch = params.refiner_switch | |
loras = params.loras | |
input_image_checkbox = params.uov_input_image is not None or params.inpaint_input_image is not None or len(params.image_prompts) > 0 | |
current_tab = 'uov' if params.uov_method != flags.disabled else 'ip' if len(params.image_prompts) > 0 else 'inpaint' if params.inpaint_input_image is not None else None | |
uov_method = params.uov_method | |
upscale_value = params.upscale_value | |
uov_input_image = params.uov_input_image | |
outpaint_selections = params.outpaint_selections | |
outpaint_distance_left = params.outpaint_distance_left | |
outpaint_distance_top = params.outpaint_distance_top | |
outpaint_distance_right = params.outpaint_distance_right | |
outpaint_distance_bottom = params.outpaint_distance_bottom | |
inpaint_input_image = params.inpaint_input_image | |
inpaint_additional_prompt = '' if params.inpaint_additional_prompt is None else params.inpaint_additional_prompt | |
inpaint_mask_image_upload = None | |
adp = params.advanced_params | |
disable_preview = adp.disable_preview | |
disable_intermediate_results = adp.disable_intermediate_results | |
disable_seed_increment = adp.disable_seed_increment | |
adm_scaler_positive = adp.adm_scaler_positive | |
adm_scaler_negative = adp.adm_scaler_negative | |
adm_scaler_end = adp.adm_scaler_end | |
adaptive_cfg = adp.adaptive_cfg | |
sampler_name = adp.sampler_name | |
scheduler_name = adp.scheduler_name | |
overwrite_step = adp.overwrite_step | |
overwrite_switch = adp.overwrite_switch | |
overwrite_width = adp.overwrite_width | |
overwrite_height = adp.overwrite_height | |
overwrite_vary_strength = adp.overwrite_vary_strength | |
overwrite_upscale_strength = adp.overwrite_upscale_strength | |
mixing_image_prompt_and_vary_upscale = adp.mixing_image_prompt_and_vary_upscale | |
mixing_image_prompt_and_inpaint = adp.mixing_image_prompt_and_inpaint | |
debugging_cn_preprocessor = adp.debugging_cn_preprocessor | |
skipping_cn_preprocessor = adp.skipping_cn_preprocessor | |
canny_low_threshold = adp.canny_low_threshold | |
canny_high_threshold = adp.canny_high_threshold | |
refiner_swap_method = adp.refiner_swap_method | |
controlnet_softness = adp.controlnet_softness | |
freeu_enabled = adp.freeu_enabled | |
freeu_b1 = adp.freeu_b1 | |
freeu_b2 = adp.freeu_b2 | |
freeu_s1 = adp.freeu_s1 | |
freeu_s2 = adp.freeu_s2 | |
debugging_inpaint_preprocessor = adp.debugging_inpaint_preprocessor | |
inpaint_disable_initial_latent = adp.inpaint_disable_initial_latent | |
inpaint_engine = adp.inpaint_engine | |
inpaint_strength = adp.inpaint_strength | |
inpaint_respective_field = adp.inpaint_respective_field | |
inpaint_mask_upload_checkbox = adp.inpaint_mask_upload_checkbox | |
invert_mask_checkbox = adp.invert_mask_checkbox | |
inpaint_erode_or_dilate = adp.inpaint_erode_or_dilate | |
black_out_nsfw = adp.black_out_nsfw | |
vae_name = adp.vae_name | |
clip_skip = adp.clip_skip | |
cn_tasks = {x: [] for x in flags.ip_list} | |
for img_prompt in params.image_prompts: | |
cn_img, cn_stop, cn_weight, cn_type = img_prompt | |
cn_tasks[cn_type].append([cn_img, cn_stop, cn_weight]) | |
if inpaint_input_image is not None and inpaint_input_image['image'] is not None: | |
inpaint_image_size = inpaint_input_image['image'].shape[:2] | |
if inpaint_input_image['mask'] is None: | |
inpaint_input_image['mask'] = np.zeros(inpaint_image_size, dtype=np.uint8) | |
else: | |
inpaint_mask_upload_checkbox = True | |
inpaint_input_image['mask'] = HWC3(inpaint_input_image['mask']) | |
inpaint_mask_image_upload = inpaint_input_image['mask'] | |
# Fooocus async_worker.py code start | |
outpaint_selections = [o.lower() for o in outpaint_selections] | |
base_model_additional_loras = [] | |
raw_style_selections = copy.deepcopy(style_selections) | |
uov_method = uov_method.lower() | |
if fooocus_expansion in style_selections: | |
use_expansion = True | |
style_selections.remove(fooocus_expansion) | |
else: | |
use_expansion = False | |
use_style = len(style_selections) > 0 | |
if base_model_name == refiner_model_name: | |
logger.std_warn('[Fooocus] Refiner disabled because base model and refiner are same.') | |
refiner_model_name = 'None' | |
steps = performance_selection.steps() | |
performance_loras = [] | |
if performance_selection == Performance.EXTREME_SPEED: | |
logger.std_warn('[Fooocus] Enter LCM mode.') | |
progressbar(async_task, 1, 'Downloading LCM components ...') | |
performance_loras += [(config.downloading_sdxl_lcm_lora(), 1.0)] | |
if refiner_model_name != 'None': | |
logger.std_info('[Fooocus] Refiner disabled in LCM mode.') | |
refiner_model_name = 'None' | |
sampler_name = 'lcm' | |
scheduler_name = 'lcm' | |
sharpness = 0.0 | |
guidance_scale = 1.0 | |
adaptive_cfg = 1.0 | |
refiner_switch = 1.0 | |
adm_scaler_positive = 1.0 | |
adm_scaler_negative = 1.0 | |
adm_scaler_end = 0.0 | |
elif performance_selection == Performance.LIGHTNING: | |
logger.std_info('[Fooocus] Enter Lightning mode.') | |
progressbar(async_task, 1, 'Downloading Lightning components ...') | |
performance_loras += [(config.downloading_sdxl_lightning_lora(), 1.0)] | |
if refiner_model_name != 'None': | |
logger.std_info('[Fooocus] Refiner disabled in Lightning mode.') | |
refiner_model_name = 'None' | |
sampler_name = 'euler' | |
scheduler_name = 'sgm_uniform' | |
sharpness = 0.0 | |
guidance_scale = 1.0 | |
adaptive_cfg = 1.0 | |
refiner_switch = 1.0 | |
adm_scaler_positive = 1.0 | |
adm_scaler_negative = 1.0 | |
adm_scaler_end = 0.0 | |
elif performance_selection == Performance.HYPER_SD: | |
print('Enter Hyper-SD mode.') | |
progressbar(async_task, 1, 'Downloading Hyper-SD components ...') | |
performance_loras += [(config.downloading_sdxl_hyper_sd_lora(), 0.8)] | |
if refiner_model_name != 'None': | |
logger.std_info('[Fooocus] Refiner disabled in Hyper-SD mode.') | |
refiner_model_name = 'None' | |
sampler_name = 'dpmpp_sde_gpu' | |
scheduler_name = 'karras' | |
sharpness = 0.0 | |
guidance_scale = 1.0 | |
adaptive_cfg = 1.0 | |
refiner_switch = 1.0 | |
adm_scaler_positive = 1.0 | |
adm_scaler_negative = 1.0 | |
adm_scaler_end = 0.0 | |
logger.std_info(f'[Parameters] Adaptive CFG = {adaptive_cfg}') | |
logger.std_info(f'[Parameters] CLIP Skip = {clip_skip}') | |
logger.std_info(f'[Parameters] Sharpness = {sharpness}') | |
logger.std_info(f'[Parameters] ControlNet Softness = {controlnet_softness}') | |
logger.std_info(f'[Parameters] ADM Scale = ' | |
f'{adm_scaler_positive} : ' | |
f'{adm_scaler_negative} : ' | |
f'{adm_scaler_end}') | |
patch_settings[pid] = PatchSettings( | |
sharpness, | |
adm_scaler_end, | |
adm_scaler_positive, | |
adm_scaler_negative, | |
controlnet_softness, | |
adaptive_cfg | |
) | |
cfg_scale = float(guidance_scale) | |
logger.std_info(f'[Parameters] CFG = {cfg_scale}') | |
initial_latent = None | |
denoising_strength = 1.0 | |
tiled = False | |
width, height = aspect_ratios_selection.replace('×', ' ').replace('*', ' ').split(' ')[:2] | |
width, height = int(width), int(height) | |
skip_prompt_processing = False | |
inpaint_worker.current_task = None | |
inpaint_parameterized = inpaint_engine != 'None' | |
inpaint_image = None | |
inpaint_mask = None | |
inpaint_head_model_path = None | |
use_synthetic_refiner = False | |
controlnet_canny_path = None | |
controlnet_cpds_path = None | |
clip_vision_path, ip_negative_path, ip_adapter_path, ip_adapter_face_path = None, None, None, None | |
seed = int(image_seed) | |
logger.std_info(f'[Parameters] Seed = {seed}') | |
goals = [] | |
tasks = [] | |
if input_image_checkbox: | |
if (current_tab == 'uov' or ( | |
current_tab == 'ip' and mixing_image_prompt_and_vary_upscale)) \ | |
and uov_method != flags.disabled and uov_input_image is not None: | |
uov_input_image = HWC3(uov_input_image) | |
if 'vary' in uov_method: | |
goals.append('vary') | |
elif 'upscale' in uov_method: | |
goals.append('upscale') | |
if 'fast' in uov_method: | |
skip_prompt_processing = True | |
else: | |
steps = performance_selection.steps_uov() | |
progressbar(async_task, 1, 'Downloading upscale models ...') | |
config.downloading_upscale_model() | |
if (current_tab == 'inpaint' or ( | |
current_tab == 'ip' and mixing_image_prompt_and_inpaint)) \ | |
and isinstance(inpaint_input_image, dict): | |
inpaint_image = inpaint_input_image['image'] | |
inpaint_mask = inpaint_input_image['mask'][:, :, 0] | |
if inpaint_mask_upload_checkbox: | |
if isinstance(inpaint_mask_image_upload, np.ndarray): | |
if inpaint_mask_image_upload.ndim == 3: | |
H, W, C = inpaint_image.shape | |
inpaint_mask_image_upload = resample_image(inpaint_mask_image_upload, width=W, height=H) | |
inpaint_mask_image_upload = np.mean(inpaint_mask_image_upload, axis=2) | |
inpaint_mask_image_upload = (inpaint_mask_image_upload > 127).astype(np.uint8) * 255 | |
inpaint_mask = np.maximum(np.zeros(shape=(H, W), dtype=np.uint8), inpaint_mask_image_upload) | |
if int(inpaint_erode_or_dilate) != 0: | |
inpaint_mask = erode_or_dilate(inpaint_mask, inpaint_erode_or_dilate) | |
if invert_mask_checkbox: | |
inpaint_mask = 255 - inpaint_mask | |
inpaint_image = HWC3(inpaint_image) | |
if isinstance(inpaint_image, np.ndarray) and isinstance(inpaint_mask, np.ndarray) \ | |
and (np.any(inpaint_mask > 127) or len(outpaint_selections) > 0): | |
progressbar(async_task, 1, 'Downloading upscale models ...') | |
config.downloading_upscale_model() | |
if inpaint_parameterized: | |
progressbar(async_task, 1, 'Downloading inpainter ...') | |
inpaint_head_model_path, inpaint_patch_model_path = config.downloading_inpaint_models( | |
inpaint_engine) | |
base_model_additional_loras += [(inpaint_patch_model_path, 1.0)] | |
logger.std_info(f'[Inpaint] Current inpaint model is {inpaint_patch_model_path}') | |
if refiner_model_name == 'None': | |
use_synthetic_refiner = True | |
refiner_switch = 0.8 | |
else: | |
inpaint_head_model_path, inpaint_patch_model_path = None, None | |
logger.std_info('[Inpaint] Parameterized inpaint is disabled.') | |
if inpaint_additional_prompt != '': | |
if prompt == '': | |
prompt = inpaint_additional_prompt | |
else: | |
prompt = inpaint_additional_prompt + '\n' + prompt | |
goals.append('inpaint') | |
if current_tab == 'ip' or \ | |
mixing_image_prompt_and_vary_upscale or \ | |
mixing_image_prompt_and_inpaint: | |
goals.append('cn') | |
progressbar(async_task, 1, 'Downloading control models ...') | |
if len(cn_tasks[flags.cn_canny]) > 0: | |
controlnet_canny_path = config.downloading_controlnet_canny() | |
if len(cn_tasks[flags.cn_cpds]) > 0: | |
controlnet_cpds_path = config.downloading_controlnet_cpds() | |
if len(cn_tasks[flags.cn_ip]) > 0: | |
clip_vision_path, ip_negative_path, ip_adapter_path = config.downloading_ip_adapters('ip') | |
if len(cn_tasks[flags.cn_ip_face]) > 0: | |
clip_vision_path, ip_negative_path, ip_adapter_face_path = config.downloading_ip_adapters( | |
'face') | |
progressbar(async_task, 1, 'Loading control models ...') | |
# Load or unload CNs | |
pipeline.refresh_controlnets([controlnet_canny_path, controlnet_cpds_path]) | |
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_path) | |
ip_adapter.load_ip_adapter(clip_vision_path, ip_negative_path, ip_adapter_face_path) | |
if overwrite_step > 0: | |
steps = overwrite_step | |
switch = int(round(steps * refiner_switch)) | |
if overwrite_switch > 0: | |
switch = overwrite_switch | |
if overwrite_width > 0: | |
width = overwrite_width | |
if overwrite_height > 0: | |
height = overwrite_height | |
logger.std_info(f'[Parameters] Sampler = {sampler_name} - {scheduler_name}') | |
logger.std_info(f'[Parameters] Steps = {steps} - {switch}') | |
progressbar(async_task, 1, 'Initializing ...') | |
if not skip_prompt_processing: | |
prompts = remove_empty_str([safe_str(p) for p in prompt.splitlines()], default='') | |
negative_prompts = remove_empty_str([safe_str(p) for p in negative_prompt.splitlines()], default='') | |
prompt = prompts[0] | |
negative_prompt = negative_prompts[0] | |
if prompt == '': | |
# disable expansion when empty since it is not meaningful and influences image prompt | |
use_expansion = False | |
extra_positive_prompts = prompts[1:] if len(prompts) > 1 else [] | |
extra_negative_prompts = negative_prompts[1:] if len(negative_prompts) > 1 else [] | |
progressbar(async_task, 3, 'Loading models ...') | |
lora_filenames = remove_performance_lora(config.lora_filenames, performance_selection) | |
loras, prompt = parse_lora_references_from_prompt(prompt, loras, config.default_max_lora_number, lora_filenames=lora_filenames) | |
loras += performance_loras | |
pipeline.refresh_everything( | |
refiner_model_name=refiner_model_name, | |
base_model_name=base_model_name, | |
loras=loras, | |
base_model_additional_loras=base_model_additional_loras, | |
use_synthetic_refiner=use_synthetic_refiner) | |
pipeline.set_clip_skip(clip_skip) | |
progressbar(async_task, 3, 'Processing prompts ...') | |
tasks = [] | |
for i in range(image_number): | |
if disable_seed_increment: | |
task_seed = seed % (constants.MAX_SEED + 1) | |
else: | |
task_seed = (seed + i) % (constants.MAX_SEED + 1) # randint is inclusive, % is not | |
task_rng = random.Random(task_seed) # may bind to inpaint noise in the future | |
task_prompt = apply_wildcards(prompt, task_rng, i, read_wildcards_in_order) | |
task_prompt = apply_arrays(task_prompt, i) | |
task_negative_prompt = apply_wildcards(negative_prompt, task_rng, i, read_wildcards_in_order) | |
task_extra_positive_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in | |
extra_positive_prompts] | |
task_extra_negative_prompts = [apply_wildcards(pmt, task_rng, i, read_wildcards_in_order) for pmt in | |
extra_negative_prompts] | |
positive_basic_workloads = [] | |
negative_basic_workloads = [] | |
task_styles = style_selections.copy() | |
if use_style: | |
for index, style in enumerate(task_styles): | |
if style == random_style_name: | |
style = get_random_style(task_rng) | |
task_styles[index] = style | |
p, n = apply_style(style, positive=task_prompt) | |
positive_basic_workloads = positive_basic_workloads + p | |
negative_basic_workloads = negative_basic_workloads + n | |
else: | |
positive_basic_workloads.append(task_prompt) | |
negative_basic_workloads.append(task_negative_prompt) # Always use independent workload for negative. | |
positive_basic_workloads = positive_basic_workloads + task_extra_positive_prompts | |
negative_basic_workloads = negative_basic_workloads + task_extra_negative_prompts | |
positive_basic_workloads = remove_empty_str(positive_basic_workloads, default=task_prompt) | |
negative_basic_workloads = remove_empty_str(negative_basic_workloads, default=task_negative_prompt) | |
tasks.append(dict( | |
task_seed=task_seed, | |
task_prompt=task_prompt, | |
task_negative_prompt=task_negative_prompt, | |
positive=positive_basic_workloads, | |
negative=negative_basic_workloads, | |
expansion='', | |
c=None, | |
uc=None, | |
positive_top_k=len(positive_basic_workloads), | |
negative_top_k=len(negative_basic_workloads), | |
log_positive_prompt='\n'.join([task_prompt] + task_extra_positive_prompts), | |
log_negative_prompt='\n'.join([task_negative_prompt] + task_extra_negative_prompts), | |
styles=task_styles | |
)) | |
if use_expansion: | |
for i, t in enumerate(tasks): | |
progressbar(async_task, 4, f'Preparing Fooocus text #{i + 1} ...') | |
expansion = pipeline.final_expansion(t['task_prompt'], t['task_seed']) | |
logger.std_info(f'[Prompt Expansion] {expansion}') | |
t['expansion'] = expansion | |
t['positive'] = copy.deepcopy(t['positive']) + [expansion] # Deep copy. | |
for i, t in enumerate(tasks): | |
progressbar(async_task, 5, f'Encoding positive #{i + 1} ...') | |
t['c'] = pipeline.clip_encode(texts=t['positive'], pool_top_k=t['positive_top_k']) | |
for i, t in enumerate(tasks): | |
if abs(float(cfg_scale) - 1.0) < 1e-4: | |
t['uc'] = pipeline.clone_cond(t['c']) | |
else: | |
progressbar(async_task, 6, f'Encoding negative #{i + 1} ...') | |
t['uc'] = pipeline.clip_encode(texts=t['negative'], pool_top_k=t['negative_top_k']) | |
if len(goals) > 0: | |
progressbar(async_task, 7, 'Image processing ...') | |
if 'vary' in goals: | |
if 'subtle' in uov_method: | |
denoising_strength = 0.5 | |
if 'strong' in uov_method: | |
denoising_strength = 0.85 | |
if overwrite_vary_strength > 0: | |
denoising_strength = overwrite_vary_strength | |
shape_ceil = get_image_shape_ceil(uov_input_image) | |
if shape_ceil < 1024: | |
logger.std_warn('[Vary] Image is resized because it is too small.') | |
shape_ceil = 1024 | |
elif shape_ceil > 2048: | |
logger.std_warn('[Vary] Image is resized because it is too big.') | |
shape_ceil = 2048 | |
uov_input_image = set_image_shape_ceil(uov_input_image, shape_ceil) | |
initial_pixels = core.numpy_to_pytorch(uov_input_image) | |
progressbar(async_task, 8, 'VAE encoding ...') | |
candidate_vae, _ = pipeline.get_candidate_vae( | |
steps=steps, | |
switch=switch, | |
denoise=denoising_strength, | |
refiner_swap_method=refiner_swap_method | |
) | |
initial_latent = core.encode_vae(vae=candidate_vae, pixels=initial_pixels) | |
B, C, H, W = initial_latent['samples'].shape | |
width = W * 8 | |
height = H * 8 | |
logger.std_info(f'[Vary] Final resolution is {str((height, width))}.') | |
if 'upscale' in goals: | |
H, W, C = uov_input_image.shape | |
progressbar(async_task, 9, f'Upscaling image from {str((H, W))} ...') | |
uov_input_image = perform_upscale(uov_input_image) | |
logger.std_info('[Upscale] Image upscale.') | |
if upscale_value is not None and upscale_value > 1.0: | |
f = upscale_value | |
else: | |
if '1.5x' in uov_method: | |
f = 1.5 | |
elif '2x' in uov_method: | |
f = 2.0 | |
else: | |
f = 1.0 | |
shape_ceil = get_shape_ceil(H * f, W * f) | |
if shape_ceil < 1024: | |
logger.std_info('[Upscale] Image is resized because it is too small.') | |
uov_input_image = set_image_shape_ceil(uov_input_image, 1024) | |
shape_ceil = 1024 | |
else: | |
uov_input_image = resample_image(uov_input_image, width=W * f, height=H * f) | |
image_is_super_large = shape_ceil > 2800 | |
if 'fast' in uov_method: | |
direct_return = True | |
elif image_is_super_large: | |
logger.std_info('[Upscale] Image is too large. Directly returned the SR image. ' | |
'Usually directly return SR image at 4K resolution ' | |
'yields better results than SDXL diffusion.') | |
direct_return = True | |
else: | |
direct_return = False | |
if direct_return: | |
# d = [('Upscale (Fast)', '2x')] | |
# log(uov_input_image, d, output_format=save_extension) | |
if config.default_black_out_nsfw or black_out_nsfw: | |
uov_input_image = default_censor(uov_input_image) | |
yield_result(async_task, uov_input_image, tasks, save_extension, False, False) | |
return | |
tiled = True | |
denoising_strength = 0.382 | |
if overwrite_upscale_strength > 0: | |
denoising_strength = overwrite_upscale_strength | |
initial_pixels = core.numpy_to_pytorch(uov_input_image) | |
progressbar(async_task, 10, 'VAE encoding ...') | |
candidate_vae, _ = pipeline.get_candidate_vae( | |
steps=steps, | |
switch=switch, | |
denoise=denoising_strength, | |
refiner_swap_method=refiner_swap_method | |
) | |
initial_latent = core.encode_vae( | |
vae=candidate_vae, | |
pixels=initial_pixels, tiled=True) | |
B, C, H, W = initial_latent['samples'].shape | |
width = W * 8 | |
height = H * 8 | |
logger.std_info(f'[Upscale] Final resolution is {str((height, width))}.') | |
if 'inpaint' in goals: | |
if len(outpaint_selections) > 0: | |
H, W, C = inpaint_image.shape | |
if 'top' in outpaint_selections: | |
distance_top = int(H * 0.3) | |
if outpaint_distance_top > 0: | |
distance_top = outpaint_distance_top | |
inpaint_image = np.pad(inpaint_image, [[distance_top, 0], [0, 0], [0, 0]], mode='edge') | |
inpaint_mask = np.pad(inpaint_mask, [[distance_top, 0], [0, 0]], mode='constant', | |
constant_values=255) | |
if 'bottom' in outpaint_selections: | |
distance_bottom = int(H * 0.3) | |
if outpaint_distance_bottom > 0: | |
distance_bottom = outpaint_distance_bottom | |
inpaint_image = np.pad(inpaint_image, [[0, distance_bottom], [0, 0], [0, 0]], mode='edge') | |
inpaint_mask = np.pad(inpaint_mask, [[0, distance_bottom], [0, 0]], mode='constant', | |
constant_values=255) | |
H, W, C = inpaint_image.shape | |
if 'left' in outpaint_selections: | |
distance_left = int(W * 0.3) | |
if outpaint_distance_left > 0: | |
distance_left = outpaint_distance_left | |
inpaint_image = np.pad(inpaint_image, [[0, 0], [distance_left, 0], [0, 0]], mode='edge') | |
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [distance_left, 0]], mode='constant', | |
constant_values=255) | |
if 'right' in outpaint_selections: | |
distance_right = int(W * 0.3) | |
if outpaint_distance_right > 0: | |
distance_right = outpaint_distance_right | |
inpaint_image = np.pad(inpaint_image, [[0, 0], [0, distance_right], [0, 0]], mode='edge') | |
inpaint_mask = np.pad(inpaint_mask, [[0, 0], [0, distance_right]], mode='constant', | |
constant_values=255) | |
inpaint_image = np.ascontiguousarray(inpaint_image.copy()) | |
inpaint_mask = np.ascontiguousarray(inpaint_mask.copy()) | |
inpaint_strength = 1.0 | |
inpaint_respective_field = 1.0 | |
denoising_strength = inpaint_strength | |
inpaint_worker.current_task = inpaint_worker.InpaintWorker( | |
image=inpaint_image, | |
mask=inpaint_mask, | |
use_fill=denoising_strength > 0.99, | |
k=inpaint_respective_field | |
) | |
if debugging_inpaint_preprocessor: | |
yield_result(async_task, inpaint_worker.current_task.visualize_mask_processing(), tasks, | |
black_out_nsfw) | |
return | |
progressbar(async_task, 11, 'VAE Inpaint encoding ...') | |
inpaint_pixel_fill = core.numpy_to_pytorch(inpaint_worker.current_task.interested_fill) | |
inpaint_pixel_image = core.numpy_to_pytorch(inpaint_worker.current_task.interested_image) | |
inpaint_pixel_mask = core.numpy_to_pytorch(inpaint_worker.current_task.interested_mask) | |
candidate_vae, candidate_vae_swap = pipeline.get_candidate_vae( | |
steps=steps, | |
switch=switch, | |
denoise=denoising_strength, | |
refiner_swap_method=refiner_swap_method | |
) | |
latent_inpaint, latent_mask = core.encode_vae_inpaint( | |
mask=inpaint_pixel_mask, | |
vae=candidate_vae, | |
pixels=inpaint_pixel_image) | |
latent_swap = None | |
if candidate_vae_swap is not None: | |
progressbar(async_task, 12, 'VAE SD15 encoding ...') | |
latent_swap = core.encode_vae( | |
vae=candidate_vae_swap, | |
pixels=inpaint_pixel_fill)['samples'] | |
progressbar(async_task, 13, 'VAE encoding ...') | |
latent_fill = core.encode_vae( | |
vae=candidate_vae, | |
pixels=inpaint_pixel_fill)['samples'] | |
inpaint_worker.current_task.load_latent( | |
latent_fill=latent_fill, latent_mask=latent_mask, latent_swap=latent_swap) | |
if inpaint_parameterized: | |
pipeline.final_unet = inpaint_worker.current_task.patch( | |
inpaint_head_model_path=inpaint_head_model_path, | |
inpaint_latent=latent_inpaint, | |
inpaint_latent_mask=latent_mask, | |
model=pipeline.final_unet | |
) | |
if not inpaint_disable_initial_latent: | |
initial_latent = {'samples': latent_fill} | |
B, C, H, W = latent_fill.shape | |
height, width = H * 8, W * 8 | |
final_height, final_width = inpaint_worker.current_task.image.shape[:2] | |
logger.std_info(f'[Inpaint] Final resolution is {str((final_height, final_width))}, latent is {str((height, width))}.') | |
if 'cn' in goals: | |
for task in cn_tasks[flags.cn_canny]: | |
cn_img, cn_stop, cn_weight = task | |
cn_img = resize_image(HWC3(cn_img), width=width, height=height) | |
if not skipping_cn_preprocessor: | |
cn_img = preprocessors.canny_pyramid(cn_img, canny_low_threshold, canny_high_threshold) | |
cn_img = HWC3(cn_img) | |
task[0] = core.numpy_to_pytorch(cn_img) | |
if debugging_cn_preprocessor: | |
yield_result(async_task, cn_img, tasks, save_extension, black_out_nsfw) | |
return | |
for task in cn_tasks[flags.cn_cpds]: | |
cn_img, cn_stop, cn_weight = task | |
cn_img = resize_image(HWC3(cn_img), width=width, height=height) | |
if not skipping_cn_preprocessor: | |
cn_img = preprocessors.cpds(cn_img) | |
cn_img = HWC3(cn_img) | |
task[0] = core.numpy_to_pytorch(cn_img) | |
if debugging_cn_preprocessor: | |
yield_result(async_task, cn_img, tasks, save_extension, black_out_nsfw) | |
return | |
for task in cn_tasks[flags.cn_ip]: | |
cn_img, cn_stop, cn_weight = task | |
cn_img = HWC3(cn_img) | |
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 | |
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) | |
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_path) | |
if debugging_cn_preprocessor: | |
yield_result(async_task, cn_img, tasks, save_extension, black_out_nsfw) | |
return | |
for task in cn_tasks[flags.cn_ip_face]: | |
cn_img, cn_stop, cn_weight = task | |
cn_img = HWC3(cn_img) | |
if not skipping_cn_preprocessor: | |
cn_img = face_crop.crop_image(cn_img) | |
# https://github.com/tencent-ailab/IP-Adapter/blob/d580c50a291566bbf9fc7ac0f760506607297e6d/README.md?plain=1#L75 | |
cn_img = resize_image(cn_img, width=224, height=224, resize_mode=0) | |
task[0] = ip_adapter.preprocess(cn_img, ip_adapter_path=ip_adapter_face_path) | |
if debugging_cn_preprocessor: | |
yield_result(async_task, cn_img, tasks, save_extension, black_out_nsfw) | |
return | |
all_ip_tasks = cn_tasks[flags.cn_ip] + cn_tasks[flags.cn_ip_face] | |
if len(all_ip_tasks) > 0: | |
pipeline.final_unet = ip_adapter.patch_model(pipeline.final_unet, all_ip_tasks) | |
if freeu_enabled: | |
logger.std_info('[Fooocus] FreeU is enabled!') | |
pipeline.final_unet = core.apply_freeu( | |
pipeline.final_unet, | |
freeu_b1, | |
freeu_b2, | |
freeu_s1, | |
freeu_s2 | |
) | |
all_steps = steps * image_number | |
logger.std_info(f'[Parameters] Denoising Strength = {denoising_strength}') | |
if isinstance(initial_latent, dict) and 'samples' in initial_latent: | |
log_shape = initial_latent['samples'].shape | |
else: | |
log_shape = f'Image Space {(height, width)}' | |
logger.std_info(f'[Parameters] Initial Latent shape: {log_shape}') | |
preparation_time = time.perf_counter() - execution_start_time | |
logger.std_info(f'[Fooocus] Preparation time: {preparation_time:.2f} seconds') | |
final_sampler_name = sampler_name | |
final_scheduler_name = scheduler_name | |
if scheduler_name in ['lcm', 'tcd']: | |
final_scheduler_name = 'sgm_uniform' | |
def patch_discrete(unet): | |
return core.opModelSamplingDiscrete.patch( | |
pipeline.final_unet, | |
sampling=scheduler_name, | |
zsnr=False)[0] | |
if pipeline.final_unet is not None: | |
pipeline.final_unet = patch_discrete(pipeline.final_unet) | |
if pipeline.final_refiner_unet is not None: | |
pipeline.final_refiner_unet = patch_discrete(pipeline.final_refiner_unet) | |
logger.std_info(f'[Fooocus] Using {scheduler_name} scheduler.') | |
elif scheduler_name == 'edm_playground_v2.5': | |
final_scheduler_name = 'karras' | |
def patch_edm(unet): | |
return core.opModelSamplingContinuousEDM.patch( | |
unet, | |
sampling=scheduler_name, | |
sigma_max=120.0, | |
sigma_min=0.002)[0] | |
if pipeline.final_unet is not None: | |
pipeline.final_unet = patch_edm(pipeline.final_unet) | |
if pipeline.final_refiner_unet is not None: | |
pipeline.final_refiner_unet = patch_edm(pipeline.final_refiner_unet) | |
logger.std_info(f'[Fooocus] Using {scheduler_name} scheduler.') | |
outputs.append(['preview', (13, 'Moving model to GPU ...', None)]) | |
def callback(step, x0, x, total_steps, y): | |
"""callback, used for progress and preview""" | |
done_steps = current_task_id * steps + step | |
outputs.append(['preview', ( | |
int(15.0 + 85.0 * float(done_steps) / float(all_steps)), | |
f'Step {step}/{total_steps} in the {current_task_id + 1}-th Sampling', | |
y)]) | |
for current_task_id, task in enumerate(tasks): | |
execution_start_time = time.perf_counter() | |
try: | |
positive_cond, negative_cond = task['c'], task['uc'] | |
if 'cn' in goals: | |
for cn_flag, cn_path in [ | |
(flags.cn_canny, controlnet_canny_path), | |
(flags.cn_cpds, controlnet_cpds_path) | |
]: | |
for cn_img, cn_stop, cn_weight in cn_tasks[cn_flag]: | |
positive_cond, negative_cond = core.apply_controlnet( | |
positive_cond, negative_cond, | |
pipeline.loaded_ControlNets[cn_path], cn_img, cn_weight, 0, cn_stop) | |
imgs = pipeline.process_diffusion( | |
positive_cond=positive_cond, | |
negative_cond=negative_cond, | |
steps=steps, | |
switch=switch, | |
width=width, | |
height=height, | |
image_seed=task['task_seed'], | |
callback=callback, | |
sampler_name=final_sampler_name, | |
scheduler_name=final_scheduler_name, | |
latent=initial_latent, | |
denoise=denoising_strength, | |
tiled=tiled, | |
cfg_scale=cfg_scale, | |
refiner_swap_method=refiner_swap_method, | |
disable_preview=disable_preview | |
) | |
del task['c'], task['uc'], positive_cond, negative_cond # Save memory | |
if inpaint_worker.current_task is not None: | |
imgs = [inpaint_worker.current_task.post_process(x) for x in imgs] | |
# Fooocus async_worker.py code end | |
results += imgs | |
except model_management.InterruptProcessingException as e: | |
logger.std_warn("[Fooocus] User stopped") | |
results = [] | |
results.append(ImageGenerationResult( | |
im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.user_cancel)) | |
async_task.set_result(results, True, str(e)) | |
break | |
except Exception as e: | |
logger.std_error(f'[Fooocus] Process error: {e}') | |
logging.exception(e) | |
results = [] | |
results.append(ImageGenerationResult( | |
im=None, seed=task['task_seed'], finish_reason=GenerationFinishReason.error)) | |
async_task.set_result(results, True, str(e)) | |
break | |
execution_time = time.perf_counter() - execution_start_time | |
logger.std_info(f'[Fooocus] Generating and saving time: {execution_time:.2f} seconds') | |
if async_task.finish_with_error: | |
worker_queue.finish_task(async_task.job_id) | |
return async_task.task_result | |
yield_result(None, results, tasks, save_extension, black_out_nsfw) | |
return | |
except Exception as e: | |
logger.std_error(f'[Fooocus] Worker error: {e}') | |
if not async_task.is_finished: | |
async_task.set_result([], True, str(e)) | |
worker_queue.finish_task(async_task.job_id) | |
logger.std_info(f"[Task Queue] Finish task with error, job_id={async_task.job_id}") | |