Spaces:
Paused
Paused
File size: 34,371 Bytes
9c9a39f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"id": "124c8be0-1c20-4ea1-aeee-106d3fb7143f",
"metadata": {},
"outputs": [],
"source": [
"from langchain_huggingface import HuggingFacePipeline, ChatHuggingFace\n",
"from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, pipeline\n",
"import torch\n",
"from langchain_core.messages import (\n",
" HumanMessage,\n",
" SystemMessage,\n",
" BaseMessage\n",
")\n",
"from typing import (\n",
" Any,\n",
" Callable,\n",
" Dict,\n",
" List,\n",
" Literal,\n",
" Optional,\n",
" Sequence,\n",
" Type,\n",
" Union,\n",
" cast,\n",
")\n",
"\n",
"class HuggingFaceAI(ChatHuggingFace):\n",
" \n",
" def _to_chat_prompt(\n",
" self,\n",
" messages: List[BaseMessage],\n",
" ) -> str:\n",
" \"\"\"Convert a list of messages into a prompt format expected by wrapped LLM.\"\"\"\n",
" if not messages:\n",
" raise ValueError(\"At least one HumanMessage must be provided!\")\n",
"\n",
" if not isinstance(messages[-1], HumanMessage) and not isinstance(messages[-1], SystemMessage) :\n",
" raise ValueError(\"Last message must be a HumanMessage or SystemMessage!!!\")\n",
"\n",
" messages_dicts = [self._to_chatml_format(m) for m in messages]\n",
"\n",
" return self.tokenizer.apply_chat_template(\n",
" messages_dicts, tokenize=False, add_generation_prompt=True\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "3ab4c82b-4268-4ffa-b814-967cf5e347d2",
"metadata": {
"tags": []
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bb1698c756e946beb49a2afcfde2e51e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer_config.json: 0%| | 0.00/137k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2fe3d3847e4e4cfa8b124211c679597c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer.model: 0%| | 0.00/587k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8dc27068bab14901a3595e921a34c4ef",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"tokenizer.json: 0%| | 0.00/1.96M [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "bc109fc9216449f19e610b30a9879b27",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"special_tokens_map.json: 0%| | 0.00/414 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c3180e986f4d411d8511e361e4f3cd8f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"config.json: 0%| | 0.00/601 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4c3c52d9f0c04b1eb3eb0c5ebd3e14c8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model.safetensors.index.json: 0%| | 0.00/23.9k [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "824ba11de3ba4cc7aa713779f3971025",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading shards: 0%| | 0/3 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8c9b9325e7584ccf93733ab371493b1a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00001-of-00003.safetensors: 0%| | 0.00/4.95G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2a5cfc651b7f4b6793305c507bb4f1ca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00002-of-00003.safetensors: 0%| | 0.00/5.00G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1aefc575e0c34cea950ca2e660024cc2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"model-00003-of-00003.safetensors: 0%| | 0.00/4.55G [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "511d965c616345eaaa447a3f6ae3d8b8",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Loading checkpoint shards: 0%| | 0/3 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a222b677f36e430383e9470d87a143c0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"generation_config.json: 0%| | 0.00/116 [00:00<?, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"AIMessage(content='<s>[INST] Hugging Face is [/INST] Hugging Face is a technology company that specializes in natural language processing (NLP). They are best known for their transformers library, which is a state-of-the-art machine learning framework for NLP tasks. The transformers library includes pre-trained models for a wide range of NLP tasks such as language translation, text classification, and question answering. Hugging Face also provides a platform for training, sharing, and using NLP models, called the Hugging Face Model Hub', id='run-9b0b07cc-2121-4c78-8ebf-61df58694193-0')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline\n",
"\n",
"llm = HuggingFacePipeline.from_model_id(\n",
" model_id=\"mistralai/Mistral-7B-Instruct-v0.3\",\n",
" device_map=\"auto\",\n",
" task=\"text-generation\",\n",
" pipeline_kwargs={\n",
" \"max_new_tokens\": 100,\n",
" \"top_k\": 50,\n",
" },\n",
")\n",
"\n",
"llm_engine_hf = HuggingFaceAI(llm=llm)\n",
"llm_engine_hf.invoke(\"Hugging Face is\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8cf48c8f-27c2-4c22-a219-965ad3621bc2",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
"from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage, AIMessage\n",
"from langchain_openai import ChatOpenAI\n",
"\n",
"\n",
"def create_agent(llm: ChatHuggingFace, tools: list, system_prompt: str):\n",
" # Each worker node will be given a name and some tools.\n",
" prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" system_prompt,\n",
" ),\n",
" MessagesPlaceholder(variable_name=\"messages\"),\n",
" MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
" ]\n",
" )\n",
" agent = create_openai_tools_agent(llm, tools, prompt)\n",
" executor = AgentExecutor(agent=agent, tools=tools)\n",
" return executor"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b2968526-9c48-45fe-b783-707873af7436",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from typing import Annotated, List, Tuple, Union\n",
"\n",
"from langchain_core.tools import tool\n",
"from langchain_experimental.tools import PythonREPLTool\n",
"\n",
"\n",
"# This executes code locally, which can be unsafe\n",
"python_repl_tool = PythonREPLTool()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "fd6d6e2f-d327-4a03-8693-9b6e20170826",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"chat_model = llm_engine_hf"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5cf6d454-81fb-43cd-a472-519df681ca32",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"def agent_node(state, agent, name):\n",
" result = agent.invoke(state)\n",
" return {\"messages\": [HumanMessage(content=result[\"output\"], name=name)]}"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "d35ca09b-1310-466d-924a-31f761a1f700",
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.tools import tool\n",
"\n",
"@tool\n",
"def multiply(a: int, b: int) -> int:\n",
" \"\"\"Multiply two numbers.\"\"\"\n",
" print(\"Multiply used\")\n",
" return a * b"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "1579a0b5-bc37-45d4-aba4-244c3891f0f6",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.prompts import PromptTemplate, ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain_core.runnables import RunnableLambda \n",
"\n",
"def stripPrompt(info):\n",
" print(info)\n",
" eot_token = \"[/INST] \"\n",
" i = info.content.rfind(eot_token)\n",
" if i == -1:\n",
" return info\n",
" \n",
" info.content = info.content[i + len(eot_token):]\n",
" \n",
" return info.content\n",
" \n",
"members = [\"Multiplier\", \"Coder\"]\n",
"# Our team supervisor is an LLM node. It just picks the next agent to process\n",
"# and decides when the work is completed\n",
"options = [\"FINISH\"] + members\n",
"system_prompt = (\n",
" \"You are a supervisor tasked with managing a conversation between the\"\n",
" \" following workers: {members}. Given the following user request,\"\n",
" \" respond with the worker to act next. Each worker will perform a\"\n",
" \" task and respond with their results and status. When finished,\"\n",
" \" respond with FINISH.\"\n",
")\n",
"\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\"human\", system_prompt),\n",
" (\"assistant\", \"ok\"),\n",
" MessagesPlaceholder(variable_name=\"messages\"),\n",
" (\"assistant\", \"ok\"),\n",
" (\n",
" \"human\",\n",
" \"Given the conversation above, who should act next?\"\n",
" \" Or should we FINISH? Select one of: {options}\",\n",
" ),\n",
" ]\n",
").partial(options=str(options), members=\", \".join(members))\n",
"\n",
"chain = ( prompt | chat_model | RunnableLambda(stripPrompt))"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "dbe4efe7-220a-42f9-badc-0e27329c8225",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"import operator\n",
"from typing import Annotated, Any, Dict, List, Optional, Sequence, TypedDict\n",
"import functools\n",
"\n",
"from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langgraph.graph import StateGraph, END\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"multiply_agent = create_agent(chat_model, [multiply], \"You multiply numbers\")\n",
"multiply_node = functools.partial(agent_node, agent=multiply_agent, name=\"Multiplier\")\n",
"#research_node = functools.partial(agent_node, agent=research_agent, name=\"Researcher\")\n",
"\n",
"# NOTE: THIS PERFORMS ARBITRARY CODE EXECUTION. PROCEED WITH CAUTION\n",
"code_agent = create_agent(\n",
" chat_model,\n",
" [python_repl_tool],\n",
" \"You may generate safe python code to analyze data and generate charts using matplotlib.\",\n",
")\n",
"code_node = functools.partial(agent_node, agent=code_agent, name=\"Coder\")\n",
"\n",
"workflow = StateGraph(AgentState)\n",
"workflow.add_node(\"Multiplier\", multiply_node)\n",
"workflow.add_node(\"Coder\", code_node)\n",
"workflow.add_node(\"supervisor\", chain)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "74714d27-60b1-4ae3-9993-d0c10b77e417",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"for member in members:\n",
" # We want our workers to ALWAYS \"report back\" to the supervisor when done\n",
" workflow.add_edge(member, \"supervisor\")\n",
"# The supervisor populates the \"next\" field in the graph state\n",
"# which routes to a node or finishes\n",
"conditional_map = {k: k for k in members}\n",
"conditional_map[\"FINISH\"] = END\n",
"workflow.add_conditional_edges(\"supervisor\", lambda x: x[\"next\"], conditional_map)\n",
"# Finally, add entrypoint\n",
"workflow.set_entry_point(\"supervisor\")\n",
"\n",
"graph = workflow.compile()"
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "e6dc680d-15ec-484b-9a72-dc8af0f04234",
"metadata": {
"tags": []
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"content=\"<s>[INST] You are a supervisor tasked with managing a conversation between the following workers: Multiplier, Coder. Given the following user request, respond with the worker to act next. Each worker will perform a task and respond with their results and status. When finished, respond with FINISH. [/INST]ok</s>[INST] What is 4 multiplied by 35 [/INST]ok</s>[INST] Given the conversation above, who should act next? Or should we FINISH? Select one of: ['FINISH', 'Multiplier', 'Coder'] [/INST] Multiplier (since they provided the result of the multiplication)\" id='run-8c0df905-9902-4ac2-8327-f4e4fb612cc2-0'\n"
]
},
{
"ename": "InvalidUpdateError",
"evalue": "Expected dict, got Multiplier (since they provided the result of the multiplication)",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mInvalidUpdateError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[25], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m s \u001b[38;5;129;01min\u001b[39;00m graph\u001b[38;5;241m.\u001b[39mstream(\n\u001b[1;32m 2\u001b[0m {\n\u001b[1;32m 3\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m: [\n\u001b[1;32m 4\u001b[0m HumanMessage(content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat is 4 multiplied by 35\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 5\u001b[0m ]\n\u001b[1;32m 6\u001b[0m }\n\u001b[1;32m 7\u001b[0m ):\n\u001b[1;32m 8\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__end__\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m s:\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28mprint\u001b[39m(s)\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/__init__.py:963\u001b[0m, in \u001b[0;36mPregel.stream\u001b[0;34m(self, input, config, stream_mode, output_keys, input_keys, interrupt_before, interrupt_after, debug)\u001b[0m\n\u001b[1;32m 960\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m fut, task\n\u001b[1;32m 962\u001b[0m \u001b[38;5;66;03m# panic on failure or timeout\u001b[39;00m\n\u001b[0;32m--> 963\u001b[0m \u001b[43m_panic_or_proceed\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdone\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minflight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstep\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 964\u001b[0m \u001b[38;5;66;03m# don't keep futures around in memory longer than needed\u001b[39;00m\n\u001b[1;32m 965\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m done, inflight, futures\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/__init__.py:1489\u001b[0m, in \u001b[0;36m_panic_or_proceed\u001b[0;34m(done, inflight, step)\u001b[0m\n\u001b[1;32m 1487\u001b[0m inflight\u001b[38;5;241m.\u001b[39mpop()\u001b[38;5;241m.\u001b[39mcancel()\n\u001b[1;32m 1488\u001b[0m \u001b[38;5;66;03m# raise the exception\u001b[39;00m\n\u001b[0;32m-> 1489\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[1;32m 1491\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inflight:\n\u001b[1;32m 1492\u001b[0m \u001b[38;5;66;03m# if we got here means we timed out\u001b[39;00m\n\u001b[1;32m 1493\u001b[0m \u001b[38;5;28;01mwhile\u001b[39;00m inflight:\n\u001b[1;32m 1494\u001b[0m \u001b[38;5;66;03m# cancel all pending tasks\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/concurrent/futures/thread.py:52\u001b[0m, in \u001b[0;36m_WorkItem.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m 51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 52\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 53\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m 54\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfuture\u001b[38;5;241m.\u001b[39mset_exception(exc)\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/retry.py:66\u001b[0m, in \u001b[0;36mrun_with_retry\u001b[0;34m(task, retry_policy)\u001b[0m\n\u001b[1;32m 64\u001b[0m task\u001b[38;5;241m.\u001b[39mwrites\u001b[38;5;241m.\u001b[39mclear()\n\u001b[1;32m 65\u001b[0m \u001b[38;5;66;03m# run the task\u001b[39;00m\n\u001b[0;32m---> 66\u001b[0m \u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mproc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minput\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;66;03m# if successful, end\u001b[39;00m\n\u001b[1;32m 68\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langchain_core/runnables/base.py:2495\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 2493\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m 2494\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2495\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2496\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m 2497\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/utils.py:86\u001b[0m, in \u001b[0;36mRunnableCallable.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 84\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkwargs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs}\n\u001b[1;32m 85\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrace:\n\u001b[0;32m---> 86\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_with_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 87\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmerge_configs\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 88\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 89\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 90\u001b[0m config \u001b[38;5;241m=\u001b[39m merge_configs(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig, config)\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langchain_core/runnables/base.py:1596\u001b[0m, in \u001b[0;36mRunnable._call_with_config\u001b[0;34m(self, func, input, config, run_type, **kwargs)\u001b[0m\n\u001b[1;32m 1592\u001b[0m context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m 1593\u001b[0m context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, child_config)\n\u001b[1;32m 1594\u001b[0m output \u001b[38;5;241m=\u001b[39m cast(\n\u001b[1;32m 1595\u001b[0m Output,\n\u001b[0;32m-> 1596\u001b[0m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1597\u001b[0m \u001b[43m \u001b[49m\u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 1598\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 1599\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m 1600\u001b[0m \u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1601\u001b[0m \u001b[43m \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1602\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1603\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m 1604\u001b[0m )\n\u001b[1;32m 1605\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 1606\u001b[0m run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langchain_core/runnables/config.py:380\u001b[0m, in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m 378\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m accepts_run_manager(func):\n\u001b[1;32m 379\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n\u001b[0;32m--> 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/write.py:97\u001b[0m, in \u001b[0;36mChannelWrite._write\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;66;03m# process entries into values\u001b[39;00m\n\u001b[1;32m 94\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m write\u001b[38;5;241m.\u001b[39mvalue \u001b[38;5;129;01mis\u001b[39;00m PASSTHROUGH \u001b[38;5;28;01melse\u001b[39;00m write\u001b[38;5;241m.\u001b[39mvalue \u001b[38;5;28;01mfor\u001b[39;00m write \u001b[38;5;129;01min\u001b[39;00m entries\n\u001b[1;32m 96\u001b[0m ]\n\u001b[0;32m---> 97\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 98\u001b[0m val \u001b[38;5;28;01mif\u001b[39;00m write\u001b[38;5;241m.\u001b[39mmapper \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m write\u001b[38;5;241m.\u001b[39mmapper\u001b[38;5;241m.\u001b[39minvoke(val, config)\n\u001b[1;32m 99\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m val, write \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(values, entries)\n\u001b[1;32m 100\u001b[0m ]\n\u001b[1;32m 101\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 102\u001b[0m (write\u001b[38;5;241m.\u001b[39mchannel, val)\n\u001b[1;32m 103\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m val, write \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(values, entries)\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m write\u001b[38;5;241m.\u001b[39mskip_none \u001b[38;5;129;01mor\u001b[39;00m val \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 105\u001b[0m ]\n\u001b[1;32m 106\u001b[0m \u001b[38;5;66;03m# write packets and values\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/write.py:98\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;66;03m# process entries into values\u001b[39;00m\n\u001b[1;32m 94\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 95\u001b[0m \u001b[38;5;28minput\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m write\u001b[38;5;241m.\u001b[39mvalue \u001b[38;5;129;01mis\u001b[39;00m PASSTHROUGH \u001b[38;5;28;01melse\u001b[39;00m write\u001b[38;5;241m.\u001b[39mvalue \u001b[38;5;28;01mfor\u001b[39;00m write \u001b[38;5;129;01min\u001b[39;00m entries\n\u001b[1;32m 96\u001b[0m ]\n\u001b[1;32m 97\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m---> 98\u001b[0m val \u001b[38;5;28;01mif\u001b[39;00m write\u001b[38;5;241m.\u001b[39mmapper \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[43mwrite\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mval\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 99\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m val, write \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(values, entries)\n\u001b[1;32m 100\u001b[0m ]\n\u001b[1;32m 101\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 102\u001b[0m (write\u001b[38;5;241m.\u001b[39mchannel, val)\n\u001b[1;32m 103\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m val, write \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(values, entries)\n\u001b[1;32m 104\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m write\u001b[38;5;241m.\u001b[39mskip_none \u001b[38;5;129;01mor\u001b[39;00m val \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 105\u001b[0m ]\n\u001b[1;32m 106\u001b[0m \u001b[38;5;66;03m# write packets and values\u001b[39;00m\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/utils.py:95\u001b[0m, in \u001b[0;36mRunnableCallable.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m 93\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m accepts_config(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc):\n\u001b[1;32m 94\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconfig\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m config\n\u001b[0;32m---> 95\u001b[0m ret \u001b[38;5;241m=\u001b[39m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 96\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(ret, Runnable) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrecurse:\n\u001b[1;32m 97\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ret\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
"File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/graph/state.py:300\u001b[0m, in \u001b[0;36mCompiledStateGraph.attach_node.<locals>._get_state_key\u001b[0;34m(input, config, key)\u001b[0m\n\u001b[1;32m 298\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m value \u001b[38;5;28;01mif\u001b[39;00m value \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m SKIP_WRITE\n\u001b[1;32m 299\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 300\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m InvalidUpdateError(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpected dict, got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28minput\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
"\u001b[0;31mInvalidUpdateError\u001b[0m: Expected dict, got Multiplier (since they provided the result of the multiplication)"
]
}
],
"source": [
"for s in graph.stream(\n",
" {\n",
" \"messages\": [\n",
" HumanMessage(content=\"What is 4 multiplied by 35\")\n",
" ]\n",
" }\n",
"):\n",
" if \"__end__\" not in s:\n",
" print(s)\n",
" print(\"----\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ff7b4d7-189a-4c31-9366-c42e3a0a7d47",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "2d14d9f3-bcc8-476a-b5f9-34987183636c",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|