File size: 34,371 Bytes
9c9a39f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "124c8be0-1c20-4ea1-aeee-106d3fb7143f",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_huggingface import HuggingFacePipeline, ChatHuggingFace\n",
    "from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, pipeline\n",
    "import torch\n",
    "from langchain_core.messages import (\n",
    "    HumanMessage,\n",
    "    SystemMessage,\n",
    "    BaseMessage\n",
    ")\n",
    "from typing import (\n",
    "    Any,\n",
    "    Callable,\n",
    "    Dict,\n",
    "    List,\n",
    "    Literal,\n",
    "    Optional,\n",
    "    Sequence,\n",
    "    Type,\n",
    "    Union,\n",
    "    cast,\n",
    ")\n",
    "\n",
    "class HuggingFaceAI(ChatHuggingFace):\n",
    "    \n",
    "    def _to_chat_prompt(\n",
    "        self,\n",
    "        messages: List[BaseMessage],\n",
    "    ) -> str:\n",
    "        \"\"\"Convert a list of messages into a prompt format expected by wrapped LLM.\"\"\"\n",
    "        if not messages:\n",
    "            raise ValueError(\"At least one HumanMessage must be provided!\")\n",
    "\n",
    "        if not isinstance(messages[-1], HumanMessage) and not isinstance(messages[-1], SystemMessage) :\n",
    "            raise ValueError(\"Last message must be a HumanMessage or SystemMessage!!!\")\n",
    "\n",
    "        messages_dicts = [self._to_chatml_format(m) for m in messages]\n",
    "\n",
    "        return self.tokenizer.apply_chat_template(\n",
    "            messages_dicts, tokenize=False, add_generation_prompt=True\n",
    "        )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3ab4c82b-4268-4ffa-b814-967cf5e347d2",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bb1698c756e946beb49a2afcfde2e51e",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer_config.json:   0%|          | 0.00/137k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2fe3d3847e4e4cfa8b124211c679597c",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer.model:   0%|          | 0.00/587k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8dc27068bab14901a3595e921a34c4ef",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "tokenizer.json:   0%|          | 0.00/1.96M [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "bc109fc9216449f19e610b30a9879b27",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "special_tokens_map.json:   0%|          | 0.00/414 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "c3180e986f4d411d8511e361e4f3cd8f",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "config.json:   0%|          | 0.00/601 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "4c3c52d9f0c04b1eb3eb0c5ebd3e14c8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model.safetensors.index.json:   0%|          | 0.00/23.9k [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "824ba11de3ba4cc7aa713779f3971025",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Downloading shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "8c9b9325e7584ccf93733ab371493b1a",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00001-of-00003.safetensors:   0%|          | 0.00/4.95G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "2a5cfc651b7f4b6793305c507bb4f1ca",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00002-of-00003.safetensors:   0%|          | 0.00/5.00G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "1aefc575e0c34cea950ca2e660024cc2",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "model-00003-of-00003.safetensors:   0%|          | 0.00/4.55G [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "511d965c616345eaaa447a3f6ae3d8b8",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "Loading checkpoint shards:   0%|          | 0/3 [00:00<?, ?it/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
       "model_id": "a222b677f36e430383e9470d87a143c0",
       "version_major": 2,
       "version_minor": 0
      },
      "text/plain": [
       "generation_config.json:   0%|          | 0.00/116 [00:00<?, ?B/s]"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": [
       "AIMessage(content='<s>[INST] Hugging Face is [/INST] Hugging Face is a technology company that specializes in natural language processing (NLP). They are best known for their transformers library, which is a state-of-the-art machine learning framework for NLP tasks. The transformers library includes pre-trained models for a wide range of NLP tasks such as language translation, text classification, and question answering. Hugging Face also provides a platform for training, sharing, and using NLP models, called the Hugging Face Model Hub', id='run-9b0b07cc-2121-4c78-8ebf-61df58694193-0')"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "from langchain_huggingface import ChatHuggingFace, HuggingFacePipeline\n",
    "\n",
    "llm = HuggingFacePipeline.from_model_id(\n",
    "    model_id=\"mistralai/Mistral-7B-Instruct-v0.3\",\n",
    "    device_map=\"auto\",\n",
    "    task=\"text-generation\",\n",
    "    pipeline_kwargs={\n",
    "        \"max_new_tokens\": 100,\n",
    "        \"top_k\": 50,\n",
    "    },\n",
    ")\n",
    "\n",
    "llm_engine_hf = HuggingFaceAI(llm=llm)\n",
    "llm_engine_hf.invoke(\"Hugging Face is\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "8cf48c8f-27c2-4c22-a219-965ad3621bc2",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain.agents import AgentExecutor, create_openai_tools_agent\n",
    "from langchain_core.messages import BaseMessage, HumanMessage, SystemMessage, AIMessage\n",
    "from langchain_openai import ChatOpenAI\n",
    "\n",
    "\n",
    "def create_agent(llm: ChatHuggingFace, tools: list, system_prompt: str):\n",
    "    # Each worker node will be given a name and some tools.\n",
    "    prompt = ChatPromptTemplate.from_messages(\n",
    "        [\n",
    "            (\n",
    "                \"system\",\n",
    "                system_prompt,\n",
    "            ),\n",
    "            MessagesPlaceholder(variable_name=\"messages\"),\n",
    "            MessagesPlaceholder(variable_name=\"agent_scratchpad\"),\n",
    "        ]\n",
    "    )\n",
    "    agent = create_openai_tools_agent(llm, tools, prompt)\n",
    "    executor = AgentExecutor(agent=agent, tools=tools)\n",
    "    return executor"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "b2968526-9c48-45fe-b783-707873af7436",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from typing import Annotated, List, Tuple, Union\n",
    "\n",
    "from langchain_core.tools import tool\n",
    "from langchain_experimental.tools import PythonREPLTool\n",
    "\n",
    "\n",
    "# This executes code locally, which can be unsafe\n",
    "python_repl_tool = PythonREPLTool()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "fd6d6e2f-d327-4a03-8693-9b6e20170826",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "chat_model = llm_engine_hf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "5cf6d454-81fb-43cd-a472-519df681ca32",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "def agent_node(state, agent, name):\n",
    "    result = agent.invoke(state)\n",
    "    return {\"messages\": [HumanMessage(content=result[\"output\"], name=name)]}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "d35ca09b-1310-466d-924a-31f761a1f700",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_core.tools import tool\n",
    "\n",
    "@tool\n",
    "def multiply(a: int, b: int) -> int:\n",
    "    \"\"\"Multiply two numbers.\"\"\"\n",
    "    print(\"Multiply used\")\n",
    "    return a * b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "id": "1579a0b5-bc37-45d4-aba4-244c3891f0f6",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "from langchain_core.output_parsers import StrOutputParser\n",
    "from langchain_core.prompts import PromptTemplate, ChatPromptTemplate, MessagesPlaceholder\n",
    "from langchain_core.runnables import RunnableLambda    \n",
    "\n",
    "def stripPrompt(info):\n",
    "    print(info)\n",
    "    eot_token = \"[/INST] \"\n",
    "    i = info.content.rfind(eot_token)\n",
    "    if i == -1:\n",
    "        return info\n",
    "    \n",
    "    info.content = info.content[i + len(eot_token):]\n",
    "    \n",
    "    return info.content\n",
    "   \n",
    "members = [\"Multiplier\", \"Coder\"]\n",
    "# Our team supervisor is an LLM node. It just picks the next agent to process\n",
    "# and decides when the work is completed\n",
    "options = [\"FINISH\"] + members\n",
    "system_prompt = (\n",
    "    \"You are a supervisor tasked with managing a conversation between the\"\n",
    "    \" following workers:  {members}. Given the following user request,\"\n",
    "    \" respond with the worker to act next. Each worker will perform a\"\n",
    "    \" task and respond with their results and status. When finished,\"\n",
    "    \" respond with FINISH.\"\n",
    ")\n",
    "\n",
    "\n",
    "prompt = ChatPromptTemplate.from_messages(\n",
    "    [\n",
    "        (\"human\", system_prompt),\n",
    "        (\"assistant\", \"ok\"),\n",
    "        MessagesPlaceholder(variable_name=\"messages\"),\n",
    "        (\"assistant\", \"ok\"),\n",
    "        (\n",
    "            \"human\",\n",
    "            \"Given the conversation above, who should act next?\"\n",
    "            \" Or should we FINISH? Select one of: {options}\",\n",
    "        ),\n",
    "    ]\n",
    ").partial(options=str(options), members=\", \".join(members))\n",
    "\n",
    "chain = ( prompt | chat_model | RunnableLambda(stripPrompt))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "id": "dbe4efe7-220a-42f9-badc-0e27329c8225",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "import operator\n",
    "from typing import Annotated, Any, Dict, List, Optional, Sequence, TypedDict\n",
    "import functools\n",
    "\n",
    "from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
    "from langgraph.graph import StateGraph, END\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "\n",
    "multiply_agent = create_agent(chat_model, [multiply], \"You multiply numbers\")\n",
    "multiply_node = functools.partial(agent_node, agent=multiply_agent, name=\"Multiplier\")\n",
    "#research_node = functools.partial(agent_node, agent=research_agent, name=\"Researcher\")\n",
    "\n",
    "# NOTE: THIS PERFORMS ARBITRARY CODE EXECUTION. PROCEED WITH CAUTION\n",
    "code_agent = create_agent(\n",
    "    chat_model,\n",
    "    [python_repl_tool],\n",
    "    \"You may generate safe python code to analyze data and generate charts using matplotlib.\",\n",
    ")\n",
    "code_node = functools.partial(agent_node, agent=code_agent, name=\"Coder\")\n",
    "\n",
    "workflow = StateGraph(AgentState)\n",
    "workflow.add_node(\"Multiplier\", multiply_node)\n",
    "workflow.add_node(\"Coder\", code_node)\n",
    "workflow.add_node(\"supervisor\", chain)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "id": "74714d27-60b1-4ae3-9993-d0c10b77e417",
   "metadata": {
    "tags": []
   },
   "outputs": [],
   "source": [
    "for member in members:\n",
    "    # We want our workers to ALWAYS \"report back\" to the supervisor when done\n",
    "    workflow.add_edge(member, \"supervisor\")\n",
    "# The supervisor populates the \"next\" field in the graph state\n",
    "# which routes to a node or finishes\n",
    "conditional_map = {k: k for k in members}\n",
    "conditional_map[\"FINISH\"] = END\n",
    "workflow.add_conditional_edges(\"supervisor\", lambda x: x[\"next\"], conditional_map)\n",
    "# Finally, add entrypoint\n",
    "workflow.set_entry_point(\"supervisor\")\n",
    "\n",
    "graph = workflow.compile()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "e6dc680d-15ec-484b-9a72-dc8af0f04234",
   "metadata": {
    "tags": []
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "content=\"<s>[INST] You are a supervisor tasked with managing a conversation between the following workers:  Multiplier, Coder. Given the following user request, respond with the worker to act next. Each worker will perform a task and respond with their results and status. When finished, respond with FINISH. [/INST]ok</s>[INST] What is 4 multiplied by 35 [/INST]ok</s>[INST] Given the conversation above, who should act next? Or should we FINISH? Select one of: ['FINISH', 'Multiplier', 'Coder'] [/INST] Multiplier (since they provided the result of the multiplication)\" id='run-8c0df905-9902-4ac2-8327-f4e4fb612cc2-0'\n"
     ]
    },
    {
     "ename": "InvalidUpdateError",
     "evalue": "Expected dict, got Multiplier (since they provided the result of the multiplication)",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mInvalidUpdateError\u001b[0m                        Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[25], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m s \u001b[38;5;129;01min\u001b[39;00m graph\u001b[38;5;241m.\u001b[39mstream(\n\u001b[1;32m      2\u001b[0m     {\n\u001b[1;32m      3\u001b[0m         \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmessages\u001b[39m\u001b[38;5;124m\"\u001b[39m: [\n\u001b[1;32m      4\u001b[0m             HumanMessage(content\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mWhat is 4 multiplied by 35\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m      5\u001b[0m         ]\n\u001b[1;32m      6\u001b[0m     }\n\u001b[1;32m      7\u001b[0m ):\n\u001b[1;32m      8\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m__end__\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m s:\n\u001b[1;32m      9\u001b[0m         \u001b[38;5;28mprint\u001b[39m(s)\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/__init__.py:963\u001b[0m, in \u001b[0;36mPregel.stream\u001b[0;34m(self, input, config, stream_mode, output_keys, input_keys, interrupt_before, interrupt_after, debug)\u001b[0m\n\u001b[1;32m    960\u001b[0m         \u001b[38;5;28;01mdel\u001b[39;00m fut, task\n\u001b[1;32m    962\u001b[0m \u001b[38;5;66;03m# panic on failure or timeout\u001b[39;00m\n\u001b[0;32m--> 963\u001b[0m \u001b[43m_panic_or_proceed\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdone\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43minflight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstep\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    964\u001b[0m \u001b[38;5;66;03m# don't keep futures around in memory longer than needed\u001b[39;00m\n\u001b[1;32m    965\u001b[0m \u001b[38;5;28;01mdel\u001b[39;00m done, inflight, futures\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/__init__.py:1489\u001b[0m, in \u001b[0;36m_panic_or_proceed\u001b[0;34m(done, inflight, step)\u001b[0m\n\u001b[1;32m   1487\u001b[0m             inflight\u001b[38;5;241m.\u001b[39mpop()\u001b[38;5;241m.\u001b[39mcancel()\n\u001b[1;32m   1488\u001b[0m         \u001b[38;5;66;03m# raise the exception\u001b[39;00m\n\u001b[0;32m-> 1489\u001b[0m         \u001b[38;5;28;01mraise\u001b[39;00m exc\n\u001b[1;32m   1491\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m inflight:\n\u001b[1;32m   1492\u001b[0m     \u001b[38;5;66;03m# if we got here means we timed out\u001b[39;00m\n\u001b[1;32m   1493\u001b[0m     \u001b[38;5;28;01mwhile\u001b[39;00m inflight:\n\u001b[1;32m   1494\u001b[0m         \u001b[38;5;66;03m# cancel all pending tasks\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/concurrent/futures/thread.py:52\u001b[0m, in \u001b[0;36m_WorkItem.run\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m     49\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m\n\u001b[1;32m     51\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m---> 52\u001b[0m     result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     53\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m exc:\n\u001b[1;32m     54\u001b[0m     \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfuture\u001b[38;5;241m.\u001b[39mset_exception(exc)\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/retry.py:66\u001b[0m, in \u001b[0;36mrun_with_retry\u001b[0;34m(task, retry_policy)\u001b[0m\n\u001b[1;32m     64\u001b[0m task\u001b[38;5;241m.\u001b[39mwrites\u001b[38;5;241m.\u001b[39mclear()\n\u001b[1;32m     65\u001b[0m \u001b[38;5;66;03m# run the task\u001b[39;00m\n\u001b[0;32m---> 66\u001b[0m \u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mproc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minput\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtask\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     67\u001b[0m \u001b[38;5;66;03m# if successful, end\u001b[39;00m\n\u001b[1;32m     68\u001b[0m \u001b[38;5;28;01mbreak\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langchain_core/runnables/base.py:2495\u001b[0m, in \u001b[0;36mRunnableSequence.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m   2493\u001b[0m             \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m step\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[1;32m   2494\u001b[0m         \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 2495\u001b[0m             \u001b[38;5;28minput\u001b[39m \u001b[38;5;241m=\u001b[39m \u001b[43mstep\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   2496\u001b[0m \u001b[38;5;66;03m# finish the root run\u001b[39;00m\n\u001b[1;32m   2497\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/utils.py:86\u001b[0m, in \u001b[0;36mRunnableCallable.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m     84\u001b[0m kwargs \u001b[38;5;241m=\u001b[39m {\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkwargs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs}\n\u001b[1;32m     85\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtrace:\n\u001b[0;32m---> 86\u001b[0m     ret \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_with_config\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m     87\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmerge_configs\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m     88\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     89\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m     90\u001b[0m     config \u001b[38;5;241m=\u001b[39m merge_configs(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig, config)\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langchain_core/runnables/base.py:1596\u001b[0m, in \u001b[0;36mRunnable._call_with_config\u001b[0;34m(self, func, input, config, run_type, **kwargs)\u001b[0m\n\u001b[1;32m   1592\u001b[0m     context \u001b[38;5;241m=\u001b[39m copy_context()\n\u001b[1;32m   1593\u001b[0m     context\u001b[38;5;241m.\u001b[39mrun(_set_config_context, child_config)\n\u001b[1;32m   1594\u001b[0m     output \u001b[38;5;241m=\u001b[39m cast(\n\u001b[1;32m   1595\u001b[0m         Output,\n\u001b[0;32m-> 1596\u001b[0m         \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1597\u001b[0m \u001b[43m            \u001b[49m\u001b[43mcall_func_with_variable_args\u001b[49m\u001b[43m,\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m   1598\u001b[0m \u001b[43m            \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m   1599\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# type: ignore[arg-type]\u001b[39;49;00m\n\u001b[1;32m   1600\u001b[0m \u001b[43m            \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1601\u001b[0m \u001b[43m            \u001b[49m\u001b[43mrun_manager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1602\u001b[0m \u001b[43m            \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1603\u001b[0m \u001b[43m        \u001b[49m\u001b[43m)\u001b[49m,\n\u001b[1;32m   1604\u001b[0m     )\n\u001b[1;32m   1605\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mBaseException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m   1606\u001b[0m     run_manager\u001b[38;5;241m.\u001b[39mon_chain_error(e)\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langchain_core/runnables/config.py:380\u001b[0m, in \u001b[0;36mcall_func_with_variable_args\u001b[0;34m(func, input, config, run_manager, **kwargs)\u001b[0m\n\u001b[1;32m    378\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m run_manager \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m accepts_run_manager(func):\n\u001b[1;32m    379\u001b[0m     kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mrun_manager\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m run_manager\n\u001b[0;32m--> 380\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/write.py:97\u001b[0m, in \u001b[0;36mChannelWrite._write\u001b[0;34m(self, input, config)\u001b[0m\n\u001b[1;32m     93\u001b[0m \u001b[38;5;66;03m# process entries into values\u001b[39;00m\n\u001b[1;32m     94\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m     95\u001b[0m     \u001b[38;5;28minput\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m write\u001b[38;5;241m.\u001b[39mvalue \u001b[38;5;129;01mis\u001b[39;00m PASSTHROUGH \u001b[38;5;28;01melse\u001b[39;00m write\u001b[38;5;241m.\u001b[39mvalue \u001b[38;5;28;01mfor\u001b[39;00m write \u001b[38;5;129;01min\u001b[39;00m entries\n\u001b[1;32m     96\u001b[0m ]\n\u001b[0;32m---> 97\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m     98\u001b[0m     val \u001b[38;5;28;01mif\u001b[39;00m write\u001b[38;5;241m.\u001b[39mmapper \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m write\u001b[38;5;241m.\u001b[39mmapper\u001b[38;5;241m.\u001b[39minvoke(val, config)\n\u001b[1;32m     99\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m val, write \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(values, entries)\n\u001b[1;32m    100\u001b[0m ]\n\u001b[1;32m    101\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m    102\u001b[0m     (write\u001b[38;5;241m.\u001b[39mchannel, val)\n\u001b[1;32m    103\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m val, write \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(values, entries)\n\u001b[1;32m    104\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m write\u001b[38;5;241m.\u001b[39mskip_none \u001b[38;5;129;01mor\u001b[39;00m val \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m    105\u001b[0m ]\n\u001b[1;32m    106\u001b[0m \u001b[38;5;66;03m# write packets and values\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/pregel/write.py:98\u001b[0m, in \u001b[0;36m<listcomp>\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m     93\u001b[0m \u001b[38;5;66;03m# process entries into values\u001b[39;00m\n\u001b[1;32m     94\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m     95\u001b[0m     \u001b[38;5;28minput\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m write\u001b[38;5;241m.\u001b[39mvalue \u001b[38;5;129;01mis\u001b[39;00m PASSTHROUGH \u001b[38;5;28;01melse\u001b[39;00m write\u001b[38;5;241m.\u001b[39mvalue \u001b[38;5;28;01mfor\u001b[39;00m write \u001b[38;5;129;01min\u001b[39;00m entries\n\u001b[1;32m     96\u001b[0m ]\n\u001b[1;32m     97\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m---> 98\u001b[0m     val \u001b[38;5;28;01mif\u001b[39;00m write\u001b[38;5;241m.\u001b[39mmapper \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[43mwrite\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43minvoke\u001b[49m\u001b[43m(\u001b[49m\u001b[43mval\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconfig\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     99\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m val, write \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(values, entries)\n\u001b[1;32m    100\u001b[0m ]\n\u001b[1;32m    101\u001b[0m values \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m    102\u001b[0m     (write\u001b[38;5;241m.\u001b[39mchannel, val)\n\u001b[1;32m    103\u001b[0m     \u001b[38;5;28;01mfor\u001b[39;00m val, write \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mzip\u001b[39m(values, entries)\n\u001b[1;32m    104\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m write\u001b[38;5;241m.\u001b[39mskip_none \u001b[38;5;129;01mor\u001b[39;00m val \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m    105\u001b[0m ]\n\u001b[1;32m    106\u001b[0m \u001b[38;5;66;03m# write packets and values\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/utils.py:95\u001b[0m, in \u001b[0;36mRunnableCallable.invoke\u001b[0;34m(self, input, config, **kwargs)\u001b[0m\n\u001b[1;32m     93\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m accepts_config(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfunc):\n\u001b[1;32m     94\u001b[0m         kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mconfig\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m config\n\u001b[0;32m---> 95\u001b[0m     ret \u001b[38;5;241m=\u001b[39m \u001b[43mcontext\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m     96\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(ret, Runnable) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrecurse:\n\u001b[1;32m     97\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m ret\u001b[38;5;241m.\u001b[39minvoke(\u001b[38;5;28minput\u001b[39m, config)\n",
      "File \u001b[0;32m~/miniconda/lib/python3.9/site-packages/langgraph/graph/state.py:300\u001b[0m, in \u001b[0;36mCompiledStateGraph.attach_node.<locals>._get_state_key\u001b[0;34m(input, config, key)\u001b[0m\n\u001b[1;32m    298\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m value \u001b[38;5;28;01mif\u001b[39;00m value \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m SKIP_WRITE\n\u001b[1;32m    299\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 300\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m InvalidUpdateError(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExpected dict, got \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28minput\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n",
      "\u001b[0;31mInvalidUpdateError\u001b[0m: Expected dict, got Multiplier (since they provided the result of the multiplication)"
     ]
    }
   ],
   "source": [
    "for s in graph.stream(\n",
    "    {\n",
    "        \"messages\": [\n",
    "            HumanMessage(content=\"What is 4 multiplied by 35\")\n",
    "        ]\n",
    "    }\n",
    "):\n",
    "    if \"__end__\" not in s:\n",
    "        print(s)\n",
    "        print(\"----\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6ff7b4d7-189a-4c31-9366-c42e3a0a7d47",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2d14d9f3-bcc8-476a-b5f9-34987183636c",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}