Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
import os | |
import json | |
import google.generativeai as genai | |
from pydantic import BaseModel, validator | |
class Item(BaseModel): | |
text: str = "sddddddddddd" | |
app = FastAPI() | |
GOOGLE_API_KEY = os.environ.get("GOOGLE_API_KEY") | |
genai.configure(api_key=GOOGLE_API_KEY) | |
# Set up the model | |
generation_config = { | |
"temperature": 0.9, | |
"top_p": 1, | |
"top_k": 1, | |
"max_output_tokens": 2048, | |
} | |
model = genai.GenerativeModel( | |
model_name="gemini-pro", | |
generation_config=generation_config, | |
) | |
task_description = " You need to classify each message you receive among the following categories: 'admiration','amusement','anger','annoyance','approval','caring','confusion','curiosity','desire','disappointment','disapproval','disgust','embarrassment','excitement','fear','gratitude','grief','joy','love','nervousness', 'optimism', 'pride', 'realization', 'relief', 'remorse', 'sadness', 'surprise', 'neutral'<div>The output must be in JSON format</div>" | |
def classify_msg(message): | |
prompt_parts = [ | |
task_description, | |
f"Message: {message['text']}", | |
"Category: ", | |
] | |
response = model.generate_content(prompt_parts) | |
json_response = json.loads( | |
response.text[response.text.find("{") : response.text.rfind("}") + 1] | |
) | |
return json_response['category'] | |
async def root(): | |
return {"Text Emotion Classification":"Version 1.5 'Text'"} | |
def read_user(js: Item): | |
return classify_msg(js.dict()) |