Spaces:
Sleeping
Sleeping
tensorgirl
commited on
Upload 4 files
Browse files- app.py +118 -0
- model.keras +0 -0
- requirements.txt +9 -0
- xgb.json +0 -0
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import numpy as np
|
4 |
+
import librosa
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow import keras
|
7 |
+
from tensorflow.keras import layers
|
8 |
+
from transformers import AutoFeatureExtractor
|
9 |
+
from sklearnex import patch_sklearn, unpatch_sklearn
|
10 |
+
patch_sklearn()
|
11 |
+
import xgboost as xgb
|
12 |
+
|
13 |
+
|
14 |
+
MAX_DURATION = 2
|
15 |
+
# Sampling rate is the number of samples of audio recorded every second
|
16 |
+
SAMPLING_RATE = 16000
|
17 |
+
BATCH_SIZE = 2 # Batch-size for training and evaluating our model.
|
18 |
+
NUM_CLASSES = 8 # Number of classes our dataset will have (11 in our case).
|
19 |
+
HIDDEN_DIM = 768 # Dimension of our model output (768 in case of Wav2Vec 2.0 - Base).
|
20 |
+
MAX_SEQ_LENGTH = MAX_DURATION * SAMPLING_RATE # Maximum length of the input audio file.
|
21 |
+
# Wav2Vec 2.0 results in an output frequency with a stride of about 20ms.
|
22 |
+
MAX_FRAMES = 99
|
23 |
+
MAX_EPOCHS = 5 # Maximum number of training epochs.
|
24 |
+
RAVDESS_CLASS_LABELS = ("angry", "calm", "disgust", "fear", "happy", "neutral","sad","surprise")
|
25 |
+
MODEL_CHECKPOINT = "facebook/wav2vec2-base"
|
26 |
+
|
27 |
+
labels = RAVDESS_CLASS_LABELS
|
28 |
+
label2id, id2label = dict(), dict()
|
29 |
+
|
30 |
+
from transformers import TFWav2Vec2Model
|
31 |
+
|
32 |
+
|
33 |
+
def mean_pool(hidden_states, feature_lengths):
|
34 |
+
attenion_mask = tf.sequence_mask(
|
35 |
+
feature_lengths, maxlen=MAX_FRAMES, dtype=tf.dtypes.int64
|
36 |
+
)
|
37 |
+
padding_mask = tf.cast(
|
38 |
+
tf.reverse(tf.cumsum(tf.reverse(attenion_mask, [-1]), -1), [-1]),
|
39 |
+
dtype=tf.dtypes.bool,
|
40 |
+
)
|
41 |
+
hidden_states = tf.where(
|
42 |
+
tf.broadcast_to(
|
43 |
+
tf.expand_dims(~padding_mask, -1), (BATCH_SIZE, MAX_FRAMES, HIDDEN_DIM)
|
44 |
+
),
|
45 |
+
0.0,
|
46 |
+
hidden_states,
|
47 |
+
)
|
48 |
+
pooled_state = tf.math.reduce_sum(hidden_states, axis=1) / tf.reshape(
|
49 |
+
tf.math.reduce_sum(tf.cast(padding_mask, dtype=tf.dtypes.float32), axis=1),
|
50 |
+
[-1, 1],
|
51 |
+
)
|
52 |
+
return pooled_state
|
53 |
+
|
54 |
+
|
55 |
+
class TFWav2Vec2ForAudioClassification(keras.Model):
|
56 |
+
|
57 |
+
def __init__(self, model_checkpoint):
|
58 |
+
super().__init__()
|
59 |
+
# Instantiate the Wav2Vec 2.0 model without the Classification-Head
|
60 |
+
self.wav2vec2 = TFWav2Vec2Model.from_pretrained(
|
61 |
+
model_checkpoint, apply_spec_augment=False, from_pt=True
|
62 |
+
)
|
63 |
+
self.pooling = layers.GlobalAveragePooling1D()
|
64 |
+
self.flat = layers.Flatten()
|
65 |
+
self.intermediate_layer_dropout = layers.Dropout(0.5)
|
66 |
+
|
67 |
+
|
68 |
+
def call(self, inputs):
|
69 |
+
hidden_states = self.wav2vec2(inputs[0])[0]
|
70 |
+
if tf.is_tensor(inputs[1]):
|
71 |
+
audio_lengths = tf.cumsum(inputs[1], -1)[:, -1]
|
72 |
+
feature_lengths = self.wav2vec2.wav2vec2._get_feat_extract_output_lengths(
|
73 |
+
audio_lengths
|
74 |
+
)
|
75 |
+
pooled_state = mean_pool(hidden_states, feature_lengths)
|
76 |
+
else:
|
77 |
+
pooled_state = self.pooling(hidden_states)
|
78 |
+
|
79 |
+
intermediate_state = self.flat(self.intermediate_layer_dropout(pooled_state))
|
80 |
+
|
81 |
+
return intermediate_state
|
82 |
+
|
83 |
+
wav2vec2_model = TFWav2Vec2ForAudioClassification(MODEL_CHECKPOINT)
|
84 |
+
wav2vec2_model.load_weights('model.keras')
|
85 |
+
|
86 |
+
for i, label in enumerate(labels):
|
87 |
+
label2id[label] = str(i)
|
88 |
+
id2label[str(i)] = label
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(
|
93 |
+
MODEL_CHECKPOINT, return_attention_mask=True
|
94 |
+
)
|
95 |
+
xgb_params = {
|
96 |
+
'objective': 'binary:logistic',
|
97 |
+
'predictor': 'cpu_predictor',
|
98 |
+
'disable_default_eval_metric': 'true',
|
99 |
+
}
|
100 |
+
|
101 |
+
model_xgb= xgb.XGBClassifier(**xgb_params)
|
102 |
+
|
103 |
+
def greet(name):
|
104 |
+
inp = feature_extractor(
|
105 |
+
name[1],
|
106 |
+
sampling_rate=feature_extractor.sampling_rate,
|
107 |
+
max_length=MAX_SEQ_LENGTH,
|
108 |
+
truncation=True,
|
109 |
+
padding=True,
|
110 |
+
)
|
111 |
+
inp = np.array([y for x,y in inp.items()])
|
112 |
+
pred = wav2vec2_model.predict([inp[0],inp[1]])
|
113 |
+
pred = model_xgb.predict(pred)
|
114 |
+
lab = id2label[str(pred[0])]
|
115 |
+
return lab
|
116 |
+
|
117 |
+
iface = gr.Interface(fn=greet, inputs="audio", outputs="text")
|
118 |
+
iface.launch()
|
model.keras
ADDED
Binary file (8.64 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|
3 |
+
huggingface-hub
|
4 |
+
joblib
|
5 |
+
librosa
|
6 |
+
resampy
|
7 |
+
tensorflow
|
8 |
+
sklearnex
|
9 |
+
keras
|
xgb.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|