Spaces:
Running
Running
import google.generativeai as genai | |
import os | |
import PyPDF2 as pdf | |
import json | |
from fastapi import FastAPI, Request, UploadFile, File | |
app = FastAPI() | |
#Prompt Template | |
input_prompt=""" | |
Hey Act Like a skilled or very experience ATS(Application Tracking System) | |
with a deep understanding of tech field,software engineering,data science ,data analyst | |
and big data engineer. Your task is to evaluate the resume based on the given job description. | |
You must consider the job market is very competitive and you should provide | |
best assistance for improving thr resumes. Assign the percentage Matching based | |
on Jd and | |
the missing keywords with high accuracy | |
resume:{text} | |
description:{jd} | |
I want the response as per below structure | |
{{"JD Match": "%", "MissingKeywords": [], "Profile Summary": ""}} | |
""" | |
genai.configure(api_key=os.environ.get("API_TOKEN")) | |
def get_gemini_repsonse(input): | |
model=genai.GenerativeModel('gemini-pro') | |
response=model.generate_content(input) | |
return response.text | |
def input_pdf_text(uploaded_file): | |
reader=pdf.PdfReader(uploaded_file) | |
text="" | |
for page in range(len(reader.pages)): | |
page=reader.pages[page] | |
text+=str(page.extract_text()) | |
return text | |
async def root(): | |
return {"Text Emotion Classification":"Version 1.5 'Text'"} | |
def process_pdf_file(file: UploadFile = File(...)): | |
contents = file.file.read() | |
with open(file.filename, 'wb') as f: | |
f.write(contents) | |
return process_pdf(file.filename) | |
def process_pdf(pdf_source): | |
text=input_pdf_text(pdf_source) | |
response=get_gemini_repsonse(input_prompt) | |
return response | |