Spaces:
Sleeping
Sleeping
File size: 4,939 Bytes
b0e3bba 6993f7f b0e3bba cf6adbe b0e3bba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.vectorstores import faiss
from langchain.memory import ConversationBufferMemory
from langchain_google_genai import ChatGoogleGenerativeAI, GoogleGenerativeAIEmbeddings
from tempfile import NamedTemporaryFile
from dotenv import load_dotenv
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.chains import ConversationalRetrievalChain
import streamlit as st
import nest_asyncio
nest_asyncio.apply()
load_dotenv()
# Initialize app resources
st.set_page_config(page_title="StudyAssist", page_icon=":book:")
st.title("StudyAssist(pharmassist-v0)")
st.write(
"An AI/RAG application to aid students in their studies, specially optimized for the pharm 028 students. In simpler terms, chat with your pdf"
)
@st.cache_resource
def initialize_resources():
llm_gemini = ChatGoogleGenerativeAI(
model="gemini-1.5-flash-latest", google_api_key=os.getenv("GOOGLE_API_KEY")
)
return llm_gemini
def get_retriever(pdf_file):
with NamedTemporaryFile(suffix="pdf") as temp:
temp.write(pdf_file.getvalue())
pdf_loader = PyPDFLoader(temp.name, extract_images=True)
pages = pdf_loader.load()
# st.write(f"AI Chatbot for {course_material}")
underlying_embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=20,
length_function=len,
is_separator_regex=False,
separators="\n",
)
documents = text_splitter.split_documents(pages)
vectorstore = faiss.FAISS.from_documents(documents, underlying_embeddings)
doc_retiever = vectorstore.as_retriever(
search_type="mmr", search_kwargs={"k": 5, "fetch_k": 10}
)
return doc_retiever
chat_model = initialize_resources()
# Streamlit UI
# Course list and pdf retrieval
courses = ["PMB", "PCL", "Kelechi_research"] # "GSP", "CPM", "PCG", "PCH"
course_pdfs = None
doc_retriever = None
conversational_chain = None
# course = st.sidebar.selectbox("Choose course", (courses))
# docs_path = f"pdfs/{course}"
# course_pdfs = os.listdir(docs_path)
# pdfs = [os.path.join(docs_path, pdf) for pdf in course_pdfs]
course_material = "{Not selected}"
# @st.cache_resource
def query_response(query, _retriever):
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
conversational_chain = ConversationalRetrievalChain.from_llm(
llm=chat_model, retriever=_retriever, memory=memory, verbose=False
)
response = conversational_chain.run(query)
return response
if "doc" not in st.session_state:
st.session_state.doc = ""
course_material = st.file_uploader("or Upload your own pdf", type="pdf")
if st.session_state != "":
try:
with st.spinner("loading document.."):
doc_retriever = get_retriever(course_material)
st.success("File loading successful, vector db initialize")
except Exception as e:
st.error(e)
# We store the conversation in the session state.
# This will be use to render the chat conversation.
# We initialize it with the first message we want to be greeted with.
if "messages" not in st.session_state:
st.session_state.messages = [
{"role": "assistant", "content": "Yoo, How far boss?"}
]
if "current_response" not in st.session_state:
st.session_state.current_response = ""
# We loop through each message in the session state and render it as
# a chat message.
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# We take questions/instructions from the chat input to pass to the LLM
if user_prompt := st.chat_input("Ask...", key="user_input"):
# Add our input to the session state
st.session_state.messages.append({"role": "user", "content": user_prompt})
# Add our input to the chat window
with st.chat_message("user"):
st.markdown(user_prompt)
# Pass our input to the llm chain and capture the final responses.
# here once the llm has finished generating the complete response.
response = query_response(user_prompt, doc_retriever)
# Add the response to the session state
st.session_state.messages.append({"role": "assistant", "content": response})
# Add the response to the chat window
with st.chat_message("assistant"):
st.markdown(response)
#
st.write("")
st.write("")
st.markdown(
"""
<div style="text-align: center; padding: 1rem;">
Project by <a href="https://github.com/kelechi-c" target="_blank" style="color: white; font-weight: bold; text-decoration: none;">
kelechi(tensor)</a>
</div>
""",
unsafe_allow_html=True,
) |