Spaces:
Running
Running
use LogitWarpers and add typical_p
Browse files
app.py
CHANGED
@@ -3,7 +3,15 @@ import torch
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
from nltk import sent_tokenize
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
nltk.download('punkt')
|
9 |
|
@@ -17,53 +25,74 @@ if cuda:
|
|
17 |
max_len = 20
|
18 |
top_k = 100
|
19 |
temperature = 1
|
|
|
20 |
burnin = 250
|
21 |
max_iter = 500
|
22 |
|
23 |
|
24 |
# adapted from https://github.com/nyu-dl/bert-gen
|
25 |
-
def generate_step(out,
|
26 |
-
gen_idx,
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
""" Generate a word from from out[gen_idx]
|
32 |
|
33 |
args:
|
34 |
- out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size
|
35 |
- gen_idx (int): location for which to generate for
|
36 |
- top_k (int): if >0, only sample from the top k most probable words
|
37 |
-
-
|
|
|
|
|
|
|
|
|
|
|
38 |
"""
|
39 |
logits = out.logits[:, gen_idx]
|
40 |
-
|
41 |
-
logits = logits / temperature
|
42 |
if top_k > 0:
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
50 |
else:
|
51 |
-
|
52 |
-
|
|
|
53 |
|
54 |
|
55 |
# adapted from https://github.com/nyu-dl/bert-gen
|
56 |
-
def parallel_sequential_generation(seed_text,
|
57 |
-
seed_end_text,
|
58 |
-
max_len=max_len,
|
59 |
-
top_k=top_k,
|
60 |
-
temperature=temperature,
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
64 |
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
|
|
|
|
|
|
|
67 |
"""
|
68 |
inp = tokenizer(seed_text + tokenizer.mask_token * max_len + seed_end_text,
|
69 |
return_tensors='pt')
|
@@ -75,12 +104,11 @@ def parallel_sequential_generation(seed_text,
|
|
75 |
|
76 |
for ii in range(max_iter):
|
77 |
kk = np.random.randint(0, max_len)
|
78 |
-
|
79 |
-
topk = top_k if (ii >= burnin) else 0
|
80 |
-
idxs = generate_step(out,
|
81 |
gen_idx=seed_len + kk,
|
82 |
-
top_k=
|
83 |
temperature=temperature,
|
|
|
84 |
sample=(ii < burnin))
|
85 |
inp['input_ids'][0][seed_len + kk] = idxs[0]
|
86 |
|
@@ -90,12 +118,27 @@ def parallel_sequential_generation(seed_text,
|
|
90 |
return tokenizer.decode(tokens)
|
91 |
|
92 |
|
93 |
-
def inbertolate(doc,
|
94 |
-
max_len=max_len,
|
95 |
-
top_k=top_k,
|
96 |
-
temperature=temperature,
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
new_doc = ''
|
100 |
paras = doc.split('\n')
|
101 |
|
@@ -108,13 +151,15 @@ def inbertolate(doc,
|
|
108 |
|
109 |
for sentence in range(len(para) - 1):
|
110 |
new_doc += para[sentence] + ' '
|
111 |
-
new_doc += parallel_sequential_generation(
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
118 |
|
119 |
new_doc += '\n'
|
120 |
return new_doc
|
@@ -130,7 +175,7 @@ if __name__ == '__main__':
|
|
130 |
gr.Interface(
|
131 |
fn=inbertolate,
|
132 |
inputs=[
|
133 |
-
gr.Textbox(label="Text", lines=
|
134 |
gr.Slider(label="Maximum length to insert between sentences",
|
135 |
minimum=1,
|
136 |
maximum=40,
|
@@ -141,6 +186,10 @@ if __name__ == '__main__':
|
|
141 |
minimum=0,
|
142 |
maximum=2,
|
143 |
value=temperature),
|
|
|
|
|
|
|
|
|
144 |
gr.Slider(label="Maximum iterations",
|
145 |
minimum=0,
|
146 |
maximum=1000,
|
@@ -150,5 +199,5 @@ if __name__ == '__main__':
|
|
150 |
maximum=500,
|
151 |
value=burnin),
|
152 |
],
|
153 |
-
outputs=gr.Textbox(label="Expanded text", lines=
|
154 |
block.launch(server_name='0.0.0.0')
|
|
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
from nltk import sent_tokenize
|
6 |
+
|
7 |
+
from transformers import (
|
8 |
+
RobertaTokenizer,
|
9 |
+
RobertaForMaskedLM,
|
10 |
+
LogitsProcessorList,
|
11 |
+
TopKLogitsWarper,
|
12 |
+
TemperatureLogitsWarper,
|
13 |
+
)
|
14 |
+
from transformers.generation_logits_process import TypicalLogitsWarper
|
15 |
|
16 |
nltk.download('punkt')
|
17 |
|
|
|
25 |
max_len = 20
|
26 |
top_k = 100
|
27 |
temperature = 1
|
28 |
+
typical_p = 0
|
29 |
burnin = 250
|
30 |
max_iter = 500
|
31 |
|
32 |
|
33 |
# adapted from https://github.com/nyu-dl/bert-gen
|
34 |
+
def generate_step(out: object,
|
35 |
+
gen_idx: int,
|
36 |
+
top_k: int = top_k,
|
37 |
+
temperature: float = temperature,
|
38 |
+
typical_p: float = typical_p,
|
39 |
+
sample: bool = False) -> list:
|
40 |
""" Generate a word from from out[gen_idx]
|
41 |
|
42 |
args:
|
43 |
- out (torch.Tensor): tensor of logits of size batch_size x seq_len x vocab_size
|
44 |
- gen_idx (int): location for which to generate for
|
45 |
- top_k (int): if >0, only sample from the top k most probable words
|
46 |
+
- temperature (float): sampling temperature
|
47 |
+
- typical_p (float): if >0 use typical sampling
|
48 |
+
- sample (bool): if True, sample from full distribution.
|
49 |
+
|
50 |
+
returns:
|
51 |
+
- list: batch_size tokens
|
52 |
"""
|
53 |
logits = out.logits[:, gen_idx]
|
54 |
+
logit_warpers = []
|
|
|
55 |
if top_k > 0:
|
56 |
+
logit_warpers += [TopKLogitsWarper(top_k)]
|
57 |
+
if temperature:
|
58 |
+
logit_warpers += [TemperatureLogitsWarper(temperature)]
|
59 |
+
if typical_p > 0:
|
60 |
+
if typical_p >= 1:
|
61 |
+
typical_p = 0.999
|
62 |
+
logit_warpers += [TypicalLogitsWarper(typical_p)]
|
63 |
+
logits = LogitsProcessorList(logit_warpers)(None, logits)
|
64 |
+
|
65 |
+
if sample:
|
66 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
67 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
68 |
else:
|
69 |
+
next_tokens = torch.argmax(logits, dim=-1)
|
70 |
+
|
71 |
+
return next_tokens.tolist()
|
72 |
|
73 |
|
74 |
# adapted from https://github.com/nyu-dl/bert-gen
|
75 |
+
def parallel_sequential_generation(seed_text: str,
|
76 |
+
seed_end_text: str,
|
77 |
+
max_len: int = max_len,
|
78 |
+
top_k: int = top_k,
|
79 |
+
temperature: float = temperature,
|
80 |
+
typical_p: float = typical_p,
|
81 |
+
max_iter: int = max_iter,
|
82 |
+
burnin: int = burnin) -> str:
|
83 |
+
""" Generate text consistent with preceding and following text
|
84 |
|
85 |
+
Args:
|
86 |
+
- seed_text (str): preceding text
|
87 |
+
- seed_end_text (str): following text
|
88 |
+
- top_k (int): if >0, only sample from the top k most probable words
|
89 |
+
- temperature (float): sampling temperature
|
90 |
+
- typical_p (float): if >0 use typical sampling
|
91 |
+
- max_iter (int): number of iterations in MCMC
|
92 |
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
|
93 |
+
|
94 |
+
Returns:
|
95 |
+
- string: generated text to insert between seed_text and seed_end_text
|
96 |
"""
|
97 |
inp = tokenizer(seed_text + tokenizer.mask_token * max_len + seed_end_text,
|
98 |
return_tensors='pt')
|
|
|
104 |
|
105 |
for ii in range(max_iter):
|
106 |
kk = np.random.randint(0, max_len)
|
107 |
+
idxs = generate_step(model(**inp),
|
|
|
|
|
108 |
gen_idx=seed_len + kk,
|
109 |
+
top_k=top_k if (ii >= burnin) else 0,
|
110 |
temperature=temperature,
|
111 |
+
typical_p=typical_p,
|
112 |
sample=(ii < burnin))
|
113 |
inp['input_ids'][0][seed_len + kk] = idxs[0]
|
114 |
|
|
|
118 |
return tokenizer.decode(tokens)
|
119 |
|
120 |
|
121 |
+
def inbertolate(doc: str,
|
122 |
+
max_len: int = max_len,
|
123 |
+
top_k: int = top_k,
|
124 |
+
temperature: float = temperature,
|
125 |
+
typical_p: float = typical_p,
|
126 |
+
max_iter: int = max_iter,
|
127 |
+
burnin: int = burnin):
|
128 |
+
""" Pad out document generating every other sentence
|
129 |
+
|
130 |
+
Args:
|
131 |
+
- doc (str): document text
|
132 |
+
- max_len (int): number of tokens to insert between sentences
|
133 |
+
- top_k (int): if >0, only sample from the top k most probable words
|
134 |
+
- temperature (float): sampling temperature
|
135 |
+
- typical_p (float): if >0 use typical sampling
|
136 |
+
- max_iter (int): number of iterations in MCMC
|
137 |
+
- burnin: during burn-in period, sample from full distribution; afterwards take argmax
|
138 |
+
|
139 |
+
Returns:
|
140 |
+
- string: generated text to insert between seed_text and seed_end_text
|
141 |
+
"""
|
142 |
new_doc = ''
|
143 |
paras = doc.split('\n')
|
144 |
|
|
|
151 |
|
152 |
for sentence in range(len(para) - 1):
|
153 |
new_doc += para[sentence] + ' '
|
154 |
+
new_doc += parallel_sequential_generation(
|
155 |
+
para[sentence],
|
156 |
+
para[sentence + 1],
|
157 |
+
max_len=max_len,
|
158 |
+
top_k=top_k,
|
159 |
+
temperature=float(temperature),
|
160 |
+
typical_p=typical_p,
|
161 |
+
burnin=burnin,
|
162 |
+
max_iter=max_iter) + ' '
|
163 |
|
164 |
new_doc += '\n'
|
165 |
return new_doc
|
|
|
175 |
gr.Interface(
|
176 |
fn=inbertolate,
|
177 |
inputs=[
|
178 |
+
gr.Textbox(label="Text", lines=10),
|
179 |
gr.Slider(label="Maximum length to insert between sentences",
|
180 |
minimum=1,
|
181 |
maximum=40,
|
|
|
186 |
minimum=0,
|
187 |
maximum=2,
|
188 |
value=temperature),
|
189 |
+
gr.Slider(label="Typical p",
|
190 |
+
minimum=0,
|
191 |
+
maximum=1,
|
192 |
+
value=typical_p),
|
193 |
gr.Slider(label="Maximum iterations",
|
194 |
minimum=0,
|
195 |
maximum=1000,
|
|
|
199 |
maximum=500,
|
200 |
value=burnin),
|
201 |
],
|
202 |
+
outputs=gr.Textbox(label="Expanded text", lines=30))
|
203 |
block.launch(server_name='0.0.0.0')
|