Spaces:
Sleeping
Sleeping
use base model if on cpu
Browse files
app.py
CHANGED
@@ -15,12 +15,11 @@ from transformers.generation_logits_process import TypicalLogitsWarper
|
|
15 |
|
16 |
nltk.download('punkt')
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
tokenizer = RobertaTokenizer.from_pretrained(
|
21 |
-
model = RobertaForMaskedLM.from_pretrained(
|
22 |
-
|
23 |
-
model = model.cuda()
|
24 |
|
25 |
max_len = 20
|
26 |
top_k = 100
|
@@ -99,8 +98,7 @@ def parallel_sequential_generation(seed_text: str,
|
|
99 |
masked_tokens = np.where(
|
100 |
inp['input_ids'][0].numpy() == tokenizer.mask_token_id)[0]
|
101 |
seed_len = masked_tokens[0]
|
102 |
-
|
103 |
-
inp = inp.to('cuda')
|
104 |
|
105 |
for ii in range(max_iter):
|
106 |
kk = np.random.randint(0, max_len)
|
|
|
15 |
|
16 |
nltk.download('punkt')
|
17 |
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
pretrained = "roberta-large" if device == "cuda" else "roberta-base"
|
20 |
+
tokenizer = RobertaTokenizer.from_pretrained(pretrained)
|
21 |
+
model = RobertaForMaskedLM.from_pretrained(pretrained)
|
22 |
+
model = model.to(device)
|
|
|
23 |
|
24 |
max_len = 20
|
25 |
top_k = 100
|
|
|
98 |
masked_tokens = np.where(
|
99 |
inp['input_ids'][0].numpy() == tokenizer.mask_token_id)[0]
|
100 |
seed_len = masked_tokens[0]
|
101 |
+
inp = inp.to(device)
|
|
|
102 |
|
103 |
for ii in range(max_iter):
|
104 |
kk = np.random.randint(0, max_len)
|