File size: 6,597 Bytes
bd366ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import random
from .nn import timestep_embedding
from .unet import UNetModel
from .xf import LayerNorm, Transformer, convert_module_to_f16
from timm.models.vision_transformer import PatchEmbed

class Text2ImModel(nn.Module):
    def __init__(
        self,
        text_ctx,
        xf_width,
        xf_layers,
        xf_heads,
        xf_final_ln,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout,
        channel_mult,
        use_fp16,
        num_heads,
        num_heads_upsample,
        num_head_channels,
        use_scale_shift_norm,
        resblock_updown, 
        in_channels = 3,  
        n_class = 3,
        image_size = 64,
    ):
        super().__init__()
        self.encoder = Encoder(img_size=image_size, patch_size=image_size//16, in_chans=n_class,
                 xf_width=xf_width, xf_layers=8, xf_heads=xf_heads, model_channels=model_channels)

        self.in_channels = in_channels
        self.decoder = Text2ImUNet(
        in_channels,
        model_channels,
        out_channels,
        num_res_blocks,
        attention_resolutions,
        dropout=dropout,
        channel_mult=channel_mult,
        use_fp16=use_fp16,
        num_heads=num_heads,
        num_heads_upsample=num_heads_upsample,
        num_head_channels=num_head_channels,
        use_scale_shift_norm=use_scale_shift_norm,
        resblock_updown=resblock_updown,
        encoder_channels=xf_width
    )


    def forward(self, xt, timesteps, ref=None, uncond_p=0.0):
        latent_outputs =self.encoder(ref, uncond_p)
        pred = self.decoder(xt, timesteps, latent_outputs)
        return pred


class Text2ImUNet(UNetModel):
    def __init__(
        self,
        *args,
        **kwargs,  
    ):
        super().__init__(*args, **kwargs)
        self.transformer_proj = nn.Linear(512, self.model_channels * 4) ###
  
    def forward(self, x, timesteps, latent_outputs):
        hs = []
        emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
        xf_proj, xf_out = latent_outputs["xf_proj"], latent_outputs["xf_out"]

        xf_proj = self.transformer_proj(xf_proj) ###
        emb = emb + xf_proj.to(emb)
 
        h = x.type(self.dtype)
        for module in self.input_blocks:
            h = module(h, emb, xf_out)
            hs.append(h)
        h = self.middle_block(h, emb, xf_out)
        for module in self.output_blocks:
            h = th.cat([h, hs.pop()], dim=1)
            h = module(h, emb, xf_out)
        h = h.type(x.dtype)
        h = self.out(h)
        return h


class Encoder(nn.Module):
    def __init__(
        self,
        img_size,
        patch_size,
        in_chans,
        xf_width,
        xf_layers,
        xf_heads, 
        model_channels,
    ): 
        super().__init__( )
        self.transformer = Transformer(
            xf_width,
            xf_layers,
            xf_heads,
        )

        self.cnn = CNN(in_chans)
        self.final_ln = LayerNorm(xf_width)
  
        self.cls_token = nn.Parameter(th.empty(1, 1, xf_width, dtype=th.float32))
        self.positional_embedding = nn.Parameter(th.empty(1, 256 + 1, xf_width, dtype=th.float32))

    def forward(self, ref, uncond_p=0.0):
        x = self.cnn(ref)
        x = x.flatten(2).transpose(1, 2)
        
        x = x + self.positional_embedding[:, 1:, :]

        cls_token = self.cls_token + self.positional_embedding[:, :1, :]
        cls_tokens = cls_token.expand(x.shape[0], -1, -1)
        x = th.cat((x, cls_tokens), dim=1)

        xf_out = self.transformer(x)
        if self.final_ln is not None:
            xf_out = self.final_ln(xf_out)
    
        xf_proj = xf_out[:, -1]
        xf_out = xf_out[:, :-1].permute(0, 2, 1)  # NLC -> NCL

        outputs = dict(xf_proj=xf_proj, xf_out=xf_out)
        return outputs


class SuperResText2ImModel(Text2ImModel):
    """
    A text2im model that performs super-resolution.
    Expects an extra kwarg `low_res` to condition on a low-resolution image.
    """

    def __init__(self, *args, **kwargs):
        if "in_channels" in kwargs:
            kwargs = dict(kwargs)
            kwargs["in_channels"] = kwargs["in_channels"] * 2
        else:
            # Curse you, Python. Or really, just curse positional arguments :|.
            args = list(args)
            args[1] = args[1] * 2
        super().__init__(*args, **kwargs)
        

    def forward(self, x, timesteps, low_res=None, **kwargs):
        _, _, new_height, new_width = x.shape
        upsampled = F.interpolate(
            low_res, (new_height, new_width), mode="bilinear", align_corners=False
        )

        # ##########
        # upsampled = upsampled + th.randn_like(upsampled)*0.0005*th.log(1 + 0.1* timesteps.reshape(timesteps.shape[0], 1,1,1))  
        # ##########

        x = th.cat([x, upsampled], dim=1)
        return super().forward(x, timesteps, **kwargs)



def conv3x3(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=3, 
                     stride=stride, padding=1, bias=True)


def conv7x7(in_channels, out_channels, stride=1):
    return nn.Conv2d(in_channels, out_channels, kernel_size=7, 
                     stride=stride, padding=3, bias=True)                     

class CNN(nn.Module):
    def __init__(self, in_channels=3):
        super(CNN, self).__init__()
        self.conv1 = conv7x7(in_channels, 32) #256
        self.norm1 = nn.InstanceNorm2d(32, affine=True)
        self.LReLU1 = nn.LeakyReLU(0.2)

        self.conv2 = conv3x3(32, 64, 2)  #128
        self.norm2 = nn.InstanceNorm2d(64, affine=True)
        self.LReLU2 = nn.LeakyReLU(0.2)
 
        self.conv3 = conv3x3(64, 128, 2)  #64
        self.norm3 = nn.InstanceNorm2d(128, affine=True)
        self.LReLU3 = nn.LeakyReLU(0.2)
        
        self.conv4 = conv3x3(128, 256, 2)  #32
        self.norm4 = nn.InstanceNorm2d(256, affine=True)
        self.LReLU4 = nn.LeakyReLU(0.2)
  
        self.conv5 = conv3x3(256, 512, 2)  #16
        self.norm5 = nn.InstanceNorm2d(512, affine=True)
        self.LReLU5 = nn.LeakyReLU(0.2)
    
        self.conv6 = conv3x3(512, 512, 1)
 
        
    def forward(self, x):
        x = self.LReLU1(self.norm1(self.conv1(x)))
        x = self.LReLU2(self.norm2(self.conv2(x)))
        x = self.LReLU3(self.norm3(self.conv3(x)))
        x = self.LReLU4(self.norm4(self.conv4(x)))
        x = self.LReLU5(self.norm5(self.conv5(x)))
        x = self.conv6(x) 
        return x