Spaces:
Runtime error
Runtime error
File size: 16,746 Bytes
bd366ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import copy
import functools
import os
import blobfile as bf
import numpy as np
import torch as th
import torch.distributed as dist
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from .glide_util import sample
from . import dist_util, logger
from .fp16_util import (
make_master_params,
master_params_to_model_params,
model_grads_to_master_grads,
unflatten_master_params,
zero_grad,
)
from .nn import update_ema
from .vgg import VGG
from .adv import AdversarialLoss
from .resample import LossAwareSampler, UniformSampler
import glob
import torchvision.utils as tvu
import PIL.Image as Image
# For ImageNet experiments, this was a good default value.
# We found that the lg_loss_scale quickly climbed to
# 20-21 within the first ~1K steps of training.
INITIAL_LOG_LOSS_SCALE = 20.0
class TrainLoop:
def __init__(
self,
model,
glide_options,
diffusion,
data,
val_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=1e-3,
schedule_sampler=None,
weight_decay=0.0,
lr_anneal_steps=0,
finetune_decoder = False,
mode = '',
use_vgg = False,
use_gan = False,
uncond_p = 0,
super_res = 0,
):
self.model = model
self.glide_options=glide_options
self.diffusion = diffusion
self.data = data
self.val_data=val_data
self.batch_size = batch_size
self.microbatch = microbatch if microbatch > 0 else batch_size
self.lr = lr
self.ema_rate = (
[ema_rate]
if isinstance(ema_rate, float)
else [float(x) for x in ema_rate.split(",")]
)
self.log_interval = log_interval
self.save_interval = save_interval
self.resume_checkpoint = find_resume_checkpoint(resume_checkpoint)
self.use_fp16 = use_fp16
self.fp16_scale_growth = fp16_scale_growth
self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
self.weight_decay = weight_decay
self.lr_anneal_steps = lr_anneal_steps
self.step = 0
self.resume_step = 0
self.global_batch = self.batch_size * dist.get_world_size()
if use_vgg:
self.vgg = VGG(conv_index='22').to(dist_util.dev())
print('use perc')
else:
self.vgg = None
if use_gan:
self.adv = AdversarialLoss()
print('use adv')
else:
self.adv = None
self.super_res = super_res
self.uncond_p =uncond_p
self.mode = mode
self.finetune_decoder = finetune_decoder
if finetune_decoder:
self.optimize_model = self.model
else:
self.optimize_model = self.model.encoder
self.model_params = list(self.optimize_model.parameters())
self.master_params = self.model_params
self.lg_loss_scale = INITIAL_LOG_LOSS_SCALE
self.sync_cuda = th.cuda.is_available()
self._load_and_sync_parameters()
if self.use_fp16:
self._setup_fp16()
self.opt = AdamW(self.master_params, lr=self.lr, weight_decay=self.weight_decay)
if self.resume_step:
self._load_optimizer_state()
# Model was resumed, either due to a restart or a checkpoint
# being specified at the command line.
self.ema_params = [
self._load_ema_parameters(rate) for rate in self.ema_rate
]
else:
self.ema_params = [
copy.deepcopy(self.master_params) for _ in range(len(self.ema_rate))
]
if th.cuda.is_available():
self.use_ddp = True
self.ddp_model = DDP(
self.model,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
)
else:
if dist.get_world_size() > 1:
logger.warn(
"Distributed training requires CUDA. "
"Gradients will not be synchronized properly!"
)
self.use_ddp = False
self.ddp_model = self.model
def _load_and_sync_parameters(self):
resume_checkpoint = self.resume_checkpoint
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(resume_checkpoint)
if dist.get_rank() == 0:
logger.log(f"loading model from checkpoint: {resume_checkpoint}...")
self.model.load_state_dict(th.load(resume_checkpoint, map_location="cpu"),strict=False)
dist_util.sync_params(self.model.parameters())
def _load_ema_parameters(self, rate):
ema_params = copy.deepcopy(self.master_params)
main_checkpoint = self.resume_checkpoint
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step, rate)
if ema_checkpoint:
if dist.get_rank() == 0:
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
state_dict = th.load(ema_checkpoint, map_location=dist_util.dev())
ema_params = self._state_dict_to_master_params(state_dict)
#dist_util.sync_params(ema_params)
return ema_params
def _load_optimizer_state(self):
main_checkpoint = self.resume_checkpoint
opt_checkpoint = bf.join(
bf.dirname(main_checkpoint), f"opt{self.resume_step:06}.pt"
)
if bf.exists(opt_checkpoint):
logger.log(f"loading optimizer state from checkpoint: {opt_checkpoint}")
state_dict = th.load(opt_checkpoint, map_location="cpu")
try:
self.opt.load_state_dict(state_dict)
except:
pass
def _setup_fp16(self):
self.master_params = make_master_params(self.model_params)
self.model.convert_to_fp16()
def run_loop(self):
while (
not self.lr_anneal_steps
or self.step <= self.lr_anneal_steps
):
batch, model_kwargs = next(self.data)
# uncond_p = 0
# if self.super_res:
# uncond_p = 0
# elif self.finetune_decoder:
# uncond_p = self.uncond_p
# elif self.step > self.lr_anneal_steps - 40000:
# uncond_p = self.uncond_p
self.run_step(batch, model_kwargs)
if self.step % self.log_interval == 0:
logger.dumpkvs()
if self.step % self.save_interval == 0:
self.save()
self.val(self.step)
self.step += 1
if (self.step - 1) % self.save_interval != 0:
self.save()
def run_step(self, batch, model_kwargs):
self.forward_backward(batch, model_kwargs)
if self.use_fp16:
self.optimize_fp16()
else:
self.optimize_normal()
self.log_step()
def forward_backward(self, batch, model_kwargs):
zero_grad(self.model_params)
for i in range(0, batch.shape[0], self.microbatch):
micro = batch[i : i + self.microbatch].to(dist_util.dev())
micro_cond={n:model_kwargs[n][i:i+self.microbatch].to(dist_util.dev()) for n in model_kwargs if n in ['ref', 'low_res']}
last_batch = (i + self.microbatch) >= batch.shape[0]
t, weights = self.schedule_sampler.sample(micro.shape[0], dist_util.dev())
if self.step <100:
vgg_loss = None
adv_loss = None
else:
vgg_loss = self.vgg
adv_loss = self.adv
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro,
t,
vgg_loss,
adv_loss,
model_kwargs=micro_cond,
)
if last_batch or not self.use_ddp:
losses = compute_losses()
else:
with self.ddp_model.no_sync():
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach()
)
loss = (losses["loss"] * weights).mean()
log_loss_dict(
self.diffusion, t, {k: v * weights for k, v in losses.items()}
)
if self.use_fp16:
loss_scale = 2 ** self.lg_loss_scale
(loss * loss_scale).backward()
else:
loss.backward()
def val(self, step):
inner_model=self.ddp_model.module
inner_model.eval()
if dist.get_rank() == 0:
print("sampling...")
s_path = os.path.join(logger.get_dir(), 'results')
os.makedirs(s_path,exist_ok=True)
img_id = 0
guidance_scale=self.glide_options['sample_c']
while (True):
if img_id >= self.glide_options['num_samples']:
break
batch, model_kwargs = next(self.val_data)
with th.no_grad():
samples=sample(
glide_model=inner_model,
glide_options=self.glide_options,
side_x=self.glide_options['image_size'],
side_y=self.glide_options['image_size'],
prompt=model_kwargs,
batch_size=self.glide_options['batch_size']//2,
guidance_scale=guidance_scale,
device=dist_util.dev(),
prediction_respacing=self.glide_options['sample_respacing'],
upsample_enabled=self.glide_options['super_res'],
upsample_temp=0.997,
mode = self.mode,
)
samples = samples.cpu()
ref = model_kwargs['ref_ori']
# LR = model_kwargs['low_res'].cpu()
for i in range(samples.size(0)):
out_path = os.path.join(s_path, f"{dist.get_rank()}_{img_id}_step{step}_{guidance_scale}_output.png")
tvu.save_image(
(samples[i]+1)*0.5, out_path)
out_path = os.path.join(s_path, f"{dist.get_rank()}_{img_id}_step{step}_{guidance_scale}_gt.png")
tvu.save_image(
(batch[i]+1)*0.5, out_path)
out_path = os.path.join(s_path, f"{dist.get_rank()}_{img_id}_step{step}_{guidance_scale}_ref.png")
tvu.save_image(
(ref[i]+1)*0.5, out_path)
# out_path = os.path.join(s_path, f"{dist.get_rank()}_{img_id}_step{step}_{guidance_scale}_lr.png")
# tvu.save_image(
# (LR[i]+1)*0.5, out_path)
img_id += 1
inner_model.train()
def optimize_fp16(self):
if any(not th.isfinite(p.grad).all() for p in self.model_params):
self.lg_loss_scale -= 1
logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
return
model_grads_to_master_grads(self.model_params, self.master_params)
self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale))
self._log_grad_norm()
self._anneal_lr()
self.opt.step()
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.master_params, rate=rate)
master_params_to_model_params(self.model_params, self.master_params)
self.lg_loss_scale += self.fp16_scale_growth
def optimize_normal(self):
self._log_grad_norm()
self._anneal_lr()
self.opt.step()
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.master_params, rate=rate)
def _log_grad_norm(self):
sqsum = 0.0
for p in self.master_params:
sqsum += (p.grad ** 2).sum().item()
logger.logkv_mean("grad_norm", np.sqrt(sqsum))
def _anneal_lr(self):
return
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples", (self.step + self.resume_step + 1) * self.global_batch)
if self.use_fp16:
logger.logkv("lg_loss_scale", self.lg_loss_scale)
def save(self):
def save_checkpoint(rate, params):
state_dict = self._master_params_to_state_dict(params)
if dist.get_rank() == 0:
logger.log(f"saving model {rate}...")
if not rate:
filename = f"model{(self.step+self.resume_step):06d}.pt"
else:
filename = f"ema_{rate}_{(self.step+self.resume_step):06d}.pt"
with bf.BlobFile(bf.join(get_blob_logdir(), filename), "wb") as f:
th.save(state_dict, f)
save_checkpoint(0, self.master_params)
for rate, params in zip(self.ema_rate, self.ema_params):
save_checkpoint(rate, params)
if dist.get_rank() == 0:
with bf.BlobFile(
bf.join(get_blob_logdir(), f"opt{(self.step+self.resume_step):06d}.pt"),
"wb",
) as f:
th.save(self.opt.state_dict(), f)
dist.barrier()
def _master_params_to_state_dict(self, master_params):
if self.use_fp16:
master_params = unflatten_master_params(
list(self.optimize_model.parameters()), master_params
)
state_dict = self.optimize_model.state_dict()
for i, (name, _value) in enumerate(self.optimize_model.named_parameters()):
assert name in state_dict
state_dict[name] = master_params[i]
return state_dict
def _state_dict_to_master_params(self, state_dict):
params = [state_dict[name] for name, _ in self.optimize_model.named_parameters()]
if self.use_fp16:
return make_master_params(params)
else:
return params
def parse_resume_step_from_filename(filename):
"""
Parse filenames of the form path/to/modelNNNNNN.pt, where NNNNNN is the
checkpoint's number of steps.
"""
filename=filename.split('/')[-1]
assert(filename.endswith(".pt"))
filename=filename[:-3]
if filename.startswith("model"):
split = filename[5:]
elif filename.startswith("ema"):
split = filename.split("_")[-1]
else:
return 0
try:
return int(split)
except ValueError:
return 0
def get_blob_logdir():
p=os.path.join(logger.get_dir(),"checkpoints")
os.makedirs(p,exist_ok=True)
return p
def find_resume_checkpoint(resume_checkpoint):
# On your infrastructure, you may want to override this to automatically
# discover the latest checkpoint on your blob storage, etc.
if not resume_checkpoint:
return None
if "ROOT" in resume_checkpoint:
maybe_root=os.environ.get("AMLT_MAP_INPUT_DIR")
maybe_root="OUTPUT/log" if not maybe_root else maybe_root
root=os.path.join(maybe_root,"checkpoints")
resume_checkpoint=resume_checkpoint.replace("ROOT",root)
if "LATEST" in resume_checkpoint:
files=glob.glob(resume_checkpoint.replace("LATEST","*.pt"))
if not files:
return None
return max(files,key=parse_resume_step_from_filename)
return resume_checkpoint
def find_ema_checkpoint(main_checkpoint, step, rate):
if main_checkpoint is None:
return None
filename = f"ema_{rate}_{(step):06d}.pt"
path = bf.join(bf.dirname(main_checkpoint), filename)
if bf.exists(path):
return path
return None
def log_loss_dict(diffusion, ts, losses):
for key, values in losses.items():
logger.logkv_mean(key, values.mean().item())
# Log the quantiles (four quartiles, in particular).
for sub_t, sub_loss in zip(ts.cpu().numpy(), values.detach().cpu().numpy()):
quartile = int(4 * sub_t / diffusion.num_timesteps)
logger.logkv_mean(f"{key}_q{quartile}", sub_loss)
|