File size: 7,587 Bytes
bd366ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""

Train a diffusion model on images.

"""
import gradio as gr
import argparse
from einops import rearrange
from glide_text2im import dist_util, logger
from torchvision.utils import make_grid
from glide_text2im.script_util import (
    model_and_diffusion_defaults,
    create_model_and_diffusion,
    args_to_dict,
    add_dict_to_argparser,
)
from glide_text2im.image_datasets_sketch import get_tensor
from glide_text2im.train_util import TrainLoop
from glide_text2im.glide_util import sample 
import torch
import os
import torch as th
import torchvision.utils as tvu
import torch.distributed as dist
from PIL import Image
import cv2
import numpy as np

def run(image, mode, sample_c=1.3,  num_samples=3, sample_step=100):
    parser, parser_up = create_argparser()
    
    args = parser.parse_args()
    args_up = parser_up.parse_args()
    dist_util.setup_dist()

    if mode == 'sketch':
        args.mode = 'coco-edge'
        args_up.mode = 'coco-edge'
        args.model_path = './ckpt/base_edge.pt'
        args.sr_model_path = './ckpt/upsample_edge.pt'

    elif mode == 'mask':
        args.mode = 'coco'
        args_up.mode = 'coco'
        args.model_path = './ckpt/base_mask.pt'
        args.sr_model_path = './ckpt/upsample_mask.pt'


    args.val_data_dir = image
    args.sample_c = sample_c
    args.num_samples = num_samples
  

    options=args_to_dict(args, model_and_diffusion_defaults(0.).keys())
    model, diffusion = create_model_and_diffusion(**options)
 
    options_up=args_to_dict(args_up, model_and_diffusion_defaults(True).keys())
    model_up, diffusion_up = create_model_and_diffusion(**options_up)
 

    if  args.model_path:
        print('loading model')
        model_ckpt = dist_util.load_state_dict(args.model_path, map_location="cpu")

        model.load_state_dict(
            model_ckpt   , strict=True )

    if  args.sr_model_path:
        print('loading sr model')
        model_ckpt2 = dist_util.load_state_dict(args.sr_model_path, map_location="cpu")

        model_up.load_state_dict(
            model_ckpt2   , strict=True ) 

 
    model.to(dist_util.dev())
    model_up.to(dist_util.dev())
    model.eval()
    model_up.eval()
 
########### dataset
    # logger.log("creating data loader...")

    if args.mode == 'coco':
        pil_image = image  
        label_pil = pil_image.convert("RGB").resize((256, 256), Image.NEAREST)
        label_tensor =  get_tensor()(label_pil)
       
        data_dict = {"ref":label_tensor.unsqueeze(0).repeat(args.num_samples, 1, 1, 1)}
 
    elif args.mode == 'coco-edge':
        # pil_image = Image.open(image)
        pil_image = image  
        label_pil = pil_image.convert("L").resize((256, 256), Image.NEAREST)
         
        im_dist = cv2.distanceTransform(255-np.array(label_pil), cv2.DIST_L1, 3)
        im_dist = np.clip((im_dist) , 0, 255).astype(np.uint8)
        im_dist = Image.fromarray(im_dist).convert("RGB")

        label_tensor =  get_tensor()(im_dist)[:1]
       
        data_dict = {"ref":label_tensor.unsqueeze(0).repeat(args.num_samples, 1, 1, 1)}

 
  
    print("sampling...")


    sampled_imgs = []
    grid_imgs = []
    img_id = 0
    while (True):
        if img_id >= args.num_samples:
            break
 
        model_kwargs = data_dict
        with th.no_grad():
            samples_lr =sample(
                glide_model= model,
                glide_options= options,
                side_x= 64,
                side_y= 64,
                prompt=model_kwargs,
                batch_size= args.num_samples,
                guidance_scale=args.sample_c,
                device=dist_util.dev(),
                prediction_respacing= str(sample_step),
                upsample_enabled= False,
                upsample_temp=0.997,
                mode = args.mode,
            )

            samples_lr = samples_lr.clamp(-1, 1)

            tmp = (127.5*(samples_lr + 1.0)).int() 
            model_kwargs['low_res'] = tmp/127.5 - 1.

            samples_hr =sample(
                glide_model= model_up,
                glide_options= options_up,
                side_x=256,
                side_y=256,
                prompt=model_kwargs,
                batch_size=args.num_samples,
                guidance_scale=1,
                device=dist_util.dev(),
                prediction_respacing= "fast27",
                upsample_enabled=True,
                upsample_temp=0.997,
                mode = args.mode,
            )
 
       
            samples_hr = samples_hr 
      

            for hr in samples_hr:
 
                hr = 255. * rearrange((hr.cpu().numpy()+1.0)*0.5, 'c h w -> h w c')
                sample_img = Image.fromarray(hr.astype(np.uint8))
                sampled_imgs.append(sample_img)
                img_id += 1   

            grid_imgs.append(samples_hr)

    grid = torch.stack(grid_imgs, 0)
    grid = rearrange(grid, 'n b c h w -> (n b) c h w')
    grid = make_grid(grid, nrow=2)
    # to image
    grid = 255. * rearrange((grid+1.0)*0.5, 'c h w -> h w c').cpu().numpy()
  
    return Image.fromarray(grid.astype(np.uint8)) 
 

def create_argparser():
    defaults = dict(
        data_dir="",
        val_data_dir="",
        model_path="./base_edge.pt",
        sr_model_path="./upsample_edge.pt",
        encoder_path="",
        schedule_sampler="uniform",
        lr=1e-4,
        weight_decay=0.0,
        lr_anneal_steps=0,
        batch_size=2,
        microbatch=-1,  # -1 disables microbatches
        ema_rate="0.9999",  # comma-separated list of EMA values
        log_interval=100,
        save_interval=20000,
        resume_checkpoint="",
        use_fp16=False,
        fp16_scale_growth=1e-3,
        sample_c=1.,
        sample_respacing="100",
        uncond_p=0.2,
        num_samples=3,
        finetune_decoder = False,
        mode = '',
        )

    defaults_up = defaults
    defaults.update(model_and_diffusion_defaults())
    parser = argparse.ArgumentParser()
    add_dict_to_argparser(parser, defaults)

    defaults_up.update(model_and_diffusion_defaults(True))
    parser_up = argparse.ArgumentParser()
    add_dict_to_argparser(parser_up, defaults_up)

    return parser, parser_up

image = gr.outputs.Image(type="pil", label="Sampled results")
css = ".output-image{height: 528px !important} .output-carousel .output-image{height:272px !important} a{text-decoration: underline}"
demo = gr.Interface(fn=run, inputs=[
    gr.inputs.Image(type="pil", label="Input Sketch" ) ,
    # gr.Image(image_mode="L", source="canvas", type="pil", shape=(256,256), invert_colors=False, tool="editor"),
    gr.inputs.Radio(label="Input Mode - The type of your input", choices=["mask", "sketch"],default="sketch"),
    gr.inputs.Slider(label="sample_c - The strength of classifier-free guidance",default=1.4, minimum=1.0, maximum=2.0),
    gr.inputs.Slider(label="Number of samples - How many samples you wish to generate", default=4, step=1, minimum=1, maximum=16),
    gr.inputs.Slider(label="Number of Steps - How many steps you want to use", default=100, step=10, minimum=50, maximum=1000),
    ], 
    outputs=[image],
    css=css,
    title="Generate images from sketches with PITI",
    description="<div>By uploading a sketch map or a semantic map and pressing submit, you can generate images based on your input.</div>")
   
demo.launch(enable_queue=True)