Spaces:
Runtime error
Runtime error
import argparse | |
import inspect | |
from . import gaussian_diffusion as gd | |
from .respace import SpacedDiffusion, space_timesteps | |
from .text2im_model import ( | |
SuperResText2ImModel, | |
Text2ImModel, | |
) | |
def model_and_diffusion_defaults(super_res=0): | |
""" | |
Defaults for image training. | |
""" | |
result= dict( | |
image_size=64, | |
num_channels=192, | |
num_res_blocks=3, | |
channel_mult="", | |
num_heads=1, | |
num_head_channels=64, | |
num_heads_upsample=-1, | |
attention_resolutions="32,16,8", | |
dropout=0.1, | |
text_ctx=128, | |
xf_width=512, | |
xf_layers=16, | |
xf_heads=8, | |
xf_final_ln=True, | |
xf_padding=True, | |
learn_sigma=True, ## | |
sigma_small=False, ## | |
diffusion_steps=1000, | |
noise_schedule="squaredcos_cap_v2", | |
timestep_respacing="", | |
use_kl=False, ## | |
predict_xstart=False, | |
rescale_timesteps=True, | |
rescale_learned_sigmas=True, | |
use_fp16=False, ## | |
use_scale_shift_norm=True, | |
resblock_updown=True, | |
cache_text_emb=False, | |
inpaint=False, | |
super_res=0, | |
mode = '', | |
) | |
if super_res: | |
result.update( | |
dict( | |
image_size=256, | |
num_res_blocks=2, | |
noise_schedule="linear", | |
super_res=super_res, | |
)) | |
return result | |
def create_model_and_diffusion( | |
image_size=64, | |
num_channels=192, | |
num_res_blocks=3, | |
channel_mult="", | |
num_heads=1, | |
num_head_channels=64, | |
num_heads_upsample=-1, | |
attention_resolutions="32,16,8", | |
dropout=0.1, | |
text_ctx=128, | |
xf_width=512, | |
xf_layers=16, | |
xf_heads=8, | |
xf_final_ln=True, | |
xf_padding=True, | |
learn_sigma=False, ## | |
sigma_small=False, ## | |
diffusion_steps=1000, | |
noise_schedule="squaredcos_cap_v2", | |
timestep_respacing="", | |
use_kl=False, ## | |
predict_xstart=False, | |
rescale_timesteps=True, | |
rescale_learned_sigmas=True, | |
use_fp16=False, ## | |
use_scale_shift_norm=True, | |
resblock_updown=True, | |
cache_text_emb=False, | |
inpaint=False, | |
super_res=False, | |
mode = '', | |
): | |
model = create_model( | |
image_size, | |
num_channels, | |
num_res_blocks, | |
learn_sigma=learn_sigma, | |
channel_mult=channel_mult, | |
use_fp16=use_fp16, | |
attention_resolutions=attention_resolutions, | |
num_heads=num_heads, | |
num_head_channels=num_head_channels, | |
num_heads_upsample=num_heads_upsample, | |
use_scale_shift_norm=use_scale_shift_norm, | |
dropout=dropout, | |
text_ctx=text_ctx, | |
xf_width=xf_width, | |
xf_layers=xf_layers, | |
xf_heads=xf_heads, | |
xf_final_ln=xf_final_ln, | |
xf_padding=xf_padding, | |
resblock_updown=resblock_updown, | |
cache_text_emb=cache_text_emb, | |
inpaint=inpaint, | |
super_res=super_res, | |
mode = mode | |
) | |
diffusion = create_gaussian_diffusion( | |
steps=diffusion_steps, | |
learn_sigma=learn_sigma, | |
sigma_small=sigma_small, | |
noise_schedule=noise_schedule, | |
use_kl=use_kl, | |
predict_xstart=predict_xstart, | |
rescale_timesteps=rescale_timesteps, | |
rescale_learned_sigmas=rescale_learned_sigmas, | |
timestep_respacing=timestep_respacing, | |
) | |
return model, diffusion | |
def create_model( | |
image_size, | |
num_channels, | |
num_res_blocks, | |
learn_sigma, | |
channel_mult, | |
use_fp16, | |
attention_resolutions, | |
num_heads, | |
num_head_channels, | |
num_heads_upsample, | |
use_scale_shift_norm, | |
dropout, | |
text_ctx, | |
xf_width, | |
xf_layers, | |
xf_heads, | |
xf_final_ln, | |
xf_padding, | |
resblock_updown, | |
cache_text_emb, | |
inpaint, | |
super_res, | |
mode, | |
): | |
if channel_mult == "": | |
if image_size == 256: | |
channel_mult = (1, 1, 2, 2, 4, 4) | |
elif image_size == 128: | |
channel_mult = (1, 1, 2, 3, 4) | |
elif image_size == 64: | |
channel_mult = (1, 2, 3, 4) | |
else: | |
raise ValueError(f"unsupported image size: {image_size}") | |
else: | |
channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(",")) | |
assert 2 ** (len(channel_mult) + 2) == image_size | |
attention_ds = [] | |
for res in attention_resolutions.split(","): | |
attention_ds.append(image_size // int(res)) | |
if super_res: | |
model_cls = SuperResText2ImModel | |
else: | |
model_cls = Text2ImModel | |
n_class = 3 | |
if mode == 'ade20k' or mode == 'coco': | |
n_class = 3 | |
elif mode == 'depth-normal' : | |
n_class = 6 | |
elif mode == 'coco-edge' or mode == 'flickr-edge': | |
n_class = 1 | |
return model_cls( | |
text_ctx=text_ctx, | |
xf_width=xf_width, | |
xf_layers=xf_layers, | |
xf_heads=xf_heads, | |
xf_final_ln=xf_final_ln, | |
model_channels=num_channels, | |
out_channels=(3 if not learn_sigma else 6), | |
num_res_blocks=num_res_blocks, | |
attention_resolutions=tuple(attention_ds), | |
dropout=dropout, | |
channel_mult=channel_mult, | |
use_fp16=use_fp16, | |
num_heads=num_heads, | |
num_heads_upsample=num_heads_upsample, | |
num_head_channels=num_head_channels, | |
use_scale_shift_norm=use_scale_shift_norm, | |
resblock_updown=resblock_updown, | |
in_channels=3, | |
n_class = n_class, | |
image_size = image_size, | |
) | |
def create_gaussian_diffusion( | |
*, | |
steps=1000, | |
learn_sigma=False, | |
sigma_small=False, | |
noise_schedule="linear", | |
use_kl=False, | |
predict_xstart=False, | |
rescale_timesteps=False, | |
rescale_learned_sigmas=False, | |
timestep_respacing="", | |
): | |
betas = gd.get_named_beta_schedule(noise_schedule, steps) | |
if use_kl: | |
loss_type = gd.LossType.RESCALED_KL | |
elif rescale_learned_sigmas: | |
loss_type = gd.LossType.RESCALED_MSE | |
else: | |
loss_type = gd.LossType.MSE | |
if not timestep_respacing: | |
timestep_respacing = [steps] | |
return SpacedDiffusion( | |
use_timesteps=space_timesteps(steps, timestep_respacing), | |
betas=betas, | |
model_mean_type=( | |
gd.ModelMeanType.EPSILON if not predict_xstart else gd.ModelMeanType.START_X | |
), | |
model_var_type=( | |
( | |
gd.ModelVarType.FIXED_LARGE | |
if not sigma_small | |
else gd.ModelVarType.FIXED_SMALL | |
) | |
if not learn_sigma | |
else gd.ModelVarType.LEARNED_RANGE | |
), | |
loss_type=loss_type, | |
rescale_timesteps=rescale_timesteps, | |
) | |
def add_dict_to_argparser(parser, default_dict): | |
for k, v in default_dict.items(): | |
v_type = type(v) | |
if v is None: | |
v_type = str | |
elif isinstance(v, bool): | |
v_type = str2bool | |
parser.add_argument(f"--{k}", default=v, type=v_type) | |
def args_to_dict(args, keys=None): | |
if keys is None: | |
keys=vars(args) | |
return {k: getattr(args, k) for k in keys} | |
def str2bool(v): | |
""" | |
https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse | |
""" | |
if isinstance(v, bool): | |
return v | |
if v.lower() in ("yes", "true", "t", "y", "1"): | |
return True | |
elif v.lower() in ("no", "false", "f", "n", "0"): | |
return False | |
else: | |
raise argparse.ArgumentTypeError("boolean value expected") | |