files added
Browse files- Pipfile +21 -0
- Pipfile.lock +0 -0
- __pycache__/handwritting_fastapi.cpython-311.pyc +0 -0
- configs.yaml +9 -0
- dockerfile +10 -0
- handwritting_fastapi.py +110 -0
- models/mnist_model.h5 +3 -0
- models/model.onnx +3 -0
- requirements.txt +0 -0
Pipfile
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[[source]]
|
2 |
+
url = "https://pypi.org/simple"
|
3 |
+
verify_ssl = true
|
4 |
+
name = "pypi"
|
5 |
+
|
6 |
+
[packages]
|
7 |
+
pytesseract = "*"
|
8 |
+
fastapi = "*"
|
9 |
+
opencv-python = "*"
|
10 |
+
mltu = "*"
|
11 |
+
python-multipart = "*"
|
12 |
+
uvicorn = "*"
|
13 |
+
symspellpy = "*"
|
14 |
+
textblob = "*"
|
15 |
+
swig = "*"
|
16 |
+
happytransformer = "*"
|
17 |
+
|
18 |
+
[dev-packages]
|
19 |
+
|
20 |
+
[requires]
|
21 |
+
python_version = "3.11"
|
Pipfile.lock
ADDED
The diff for this file is too large to render.
See raw diff
|
|
__pycache__/handwritting_fastapi.cpython-311.pyc
ADDED
Binary file (6.15 kB). View file
|
|
configs.yaml
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
batch_size: 32
|
2 |
+
height: 96
|
3 |
+
learning_rate: 0.0005
|
4 |
+
max_text_length: 73
|
5 |
+
model_path: ./models/model.onnx
|
6 |
+
train_epochs: 1000
|
7 |
+
train_workers: 20
|
8 |
+
vocab: '''3.FR20JWIe8CyBowxTV5rgOYQ,ipPcqDGnMAK(Eb6)fH:"9LlUt;jsz m4&1#kZ-adNhvu7!S?'
|
9 |
+
width: 1408
|
dockerfile
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.11
|
2 |
+
|
3 |
+
COPY . .
|
4 |
+
|
5 |
+
WORKDIR /
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /requirements.txt
|
8 |
+
|
9 |
+
|
10 |
+
CMD ["uvicorn", "handwritting_fastapi:app", "--host", "0.0.0.0", "--port", "7860"]
|
handwritting_fastapi.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import io
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import pytesseract
|
7 |
+
|
8 |
+
from fastapi import FastAPI, UploadFile, File
|
9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
10 |
+
|
11 |
+
from mltu.inferenceModel import OnnxInferenceModel
|
12 |
+
from mltu.utils.text_utils import ctc_decoder
|
13 |
+
from mltu.transformers import ImageResizer
|
14 |
+
from mltu.configs import BaseModelConfigs
|
15 |
+
|
16 |
+
from textblob import TextBlob
|
17 |
+
from happytransformer import HappyTextToText, TTSettings
|
18 |
+
|
19 |
+
configs = BaseModelConfigs.load("./configs.yaml")
|
20 |
+
|
21 |
+
happy_tt = HappyTextToText("T5", "vennify/t5-base-grammar-correction")
|
22 |
+
|
23 |
+
beam_settings = TTSettings(num_beams=5, min_length=1, max_length=100)
|
24 |
+
|
25 |
+
app = FastAPI()
|
26 |
+
|
27 |
+
origins = ["*"]
|
28 |
+
|
29 |
+
app.add_middleware(
|
30 |
+
CORSMiddleware,
|
31 |
+
allow_origins=origins,
|
32 |
+
allow_credentials=True,
|
33 |
+
allow_methods=["*"],
|
34 |
+
allow_headers=["*"],
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
class ImageToWordModel(OnnxInferenceModel):
|
39 |
+
def __init__(self, char_list, *args, **kwargs):
|
40 |
+
super().__init__(*args, **kwargs)
|
41 |
+
self.char_list = char_list
|
42 |
+
|
43 |
+
def predict(self, image: np.ndarray):
|
44 |
+
image = ImageResizer.resize_maintaining_aspect_ratio(
|
45 |
+
image, *self.input_shape[:2][::-1]
|
46 |
+
)
|
47 |
+
|
48 |
+
image_pred = np.expand_dims(image, axis=0).astype(np.float32)
|
49 |
+
|
50 |
+
preds = self.model.run(None, {self.input_name: image_pred})[0]
|
51 |
+
|
52 |
+
text = ctc_decoder(preds, self.char_list)[0]
|
53 |
+
|
54 |
+
return text
|
55 |
+
|
56 |
+
|
57 |
+
model = ImageToWordModel(model_path=configs.model_path, char_list=configs.vocab)
|
58 |
+
extracted_text = ""
|
59 |
+
|
60 |
+
@app.post("/extract_handwritten_text/")
|
61 |
+
async def predict_text(image: UploadFile):
|
62 |
+
global extracted_text
|
63 |
+
# Read the uploaded image
|
64 |
+
img = await image.read()
|
65 |
+
nparr = np.frombuffer(img, np.uint8)
|
66 |
+
img = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
67 |
+
|
68 |
+
# Make a prediction
|
69 |
+
extracted_text = model.predict(img)
|
70 |
+
corrected_text = happy_tt.generate_text(extracted_text, beam_settings)
|
71 |
+
|
72 |
+
return {"text": extracted_text, "corrected_text": corrected_text}
|
73 |
+
|
74 |
+
|
75 |
+
@app.post("/extract_text/")
|
76 |
+
async def extract_text_from_image(image: UploadFile):
|
77 |
+
global extracted_text
|
78 |
+
# Check if the uploaded file is an image
|
79 |
+
if image.content_type.startswith("image/"):
|
80 |
+
# Read the image from the uploaded file
|
81 |
+
image_bytes = await image.read()
|
82 |
+
img = Image.open(io.BytesIO(image_bytes))
|
83 |
+
|
84 |
+
# Perform OCR on the image
|
85 |
+
extracted_text = pytesseract.image_to_string(img)
|
86 |
+
corrected_text = happy_tt.generate_text(extracted_text, beam_settings)
|
87 |
+
|
88 |
+
return {"text": extracted_text, "corrected_text": corrected_text}
|
89 |
+
else:
|
90 |
+
return {"error": "Invalid file format. Please upload an image."}
|
91 |
+
|
92 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration
|
93 |
+
from pydantic import BaseModel
|
94 |
+
|
95 |
+
tokenizer = AutoTokenizer.from_pretrained("grammarly/coedit-large")
|
96 |
+
chatModel = T5ForConditionalGeneration.from_pretrained("grammarly/coedit-large")
|
97 |
+
|
98 |
+
class ChatPrompt(BaseModel):
|
99 |
+
prompt: str
|
100 |
+
|
101 |
+
@app.post("/chat_prompt/")
|
102 |
+
async def chat_prompt(request: ChatPrompt):
|
103 |
+
global extracted_text
|
104 |
+
input_text = request.prompt + ": " + extracted_text
|
105 |
+
print(input_text)
|
106 |
+
input_ids = tokenizer(input_text, return_tensors="pt").input_ids
|
107 |
+
outputs = chatModel.generate(input_ids, max_length=256)
|
108 |
+
edited_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
109 |
+
|
110 |
+
return {"edited_text": edited_text}
|
models/mnist_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e92accaee40ef1e16c8822fb60686fd5c26183b3cf833446c135701bd61344c2
|
3 |
+
size 7435768
|
models/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3447f46751b438e16020536605597a8508d7cb6f98118b62d3f21258e4be83aa
|
3 |
+
size 9718812
|
requirements.txt
ADDED
Binary file (5.48 kB). View file
|
|