Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -63,22 +63,22 @@ def transcribe_speech(filepath):
|
|
63 |
# Check length and process
|
64 |
if input_features.shape[-1] > 3000:
|
65 |
print("Splitting audio required")
|
66 |
-
from pydub import AudioSegment
|
67 |
-
|
68 |
-
def split_audio(file_path, chunk_length_ms=30000): # 30 sec chunks
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
# Split and transcribe
|
74 |
-
audio_chunks = split_audio(audio_path)
|
75 |
-
|
76 |
-
for i, chunk in enumerate(audio_chunks):
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
else:
|
83 |
predicted_ids = model.generate(input_features)
|
84 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
|
|
63 |
# Check length and process
|
64 |
if input_features.shape[-1] > 3000:
|
65 |
print("Splitting audio required")
|
66 |
+
# from pydub import AudioSegment
|
67 |
+
|
68 |
+
# def split_audio(file_path, chunk_length_ms=30000): # 30 sec chunks
|
69 |
+
# audio = AudioSegment.from_file(file_path)
|
70 |
+
# chunks = [audio[i:i+chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
71 |
+
# return chunks
|
72 |
+
|
73 |
+
# # Split and transcribe
|
74 |
+
# audio_chunks = split_audio(audio_path)
|
75 |
+
|
76 |
+
# for i, chunk in enumerate(audio_chunks):
|
77 |
+
# print(i)
|
78 |
+
# chunk.export(f"chunk_{i}.wav", format="wav")
|
79 |
+
# result = pipe(f"chunk_{i}.wav")
|
80 |
+
# output += result['text'] + " "
|
81 |
+
# print(f"Chunk {i}: {result['text']}")
|
82 |
else:
|
83 |
predicted_ids = model.generate(input_features)
|
84 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|