File size: 54,644 Bytes
a32946d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
import spaces
import gradio as gr
import numpy as np

# DiffuseCraft
from dc import (infer, _infer, pass_result, get_diffusers_model_list, get_samplers, save_image_history,
    get_vaes, enable_diffusers_model_detail, extract_exif_data, process_upscale, UPSCALER_KEYS, FACE_RESTORATION_MODELS,
    preset_quality, preset_styles, process_style_prompt, get_all_lora_tupled_list, update_loras, apply_lora_prompt,
    download_my_lora, search_civitai_lora, update_civitai_selection, select_civitai_lora, search_civitai_lora_json,
    get_t2i_model_info, get_civitai_tag, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
    SCHEDULE_TYPE_OPTIONS, SCHEDULE_PREDICTION_TYPE_OPTIONS, preprocessor_tab, SDXL_TASK, TASK_MODEL_LIST,
    PROMPT_W_OPTIONS, POST_PROCESSING_SAMPLER, DIFFUSERS_CONTROLNET_MODEL, IP_MODELS, MODE_IP_OPTIONS,
    TASK_AND_PREPROCESSORS, update_task_options, change_preprocessor_choices, get_ti_choices,
    update_textual_inversion, set_textual_inversion_prompt, create_mask_now)
# Translator
from llmdolphin import (dolphin_respond_auto, dolphin_parse_simple,
    get_llm_formats, get_dolphin_model_format, get_dolphin_models,
    get_dolphin_model_info, select_dolphin_model, select_dolphin_format, get_dolphin_sysprompt)
# Tagger
from tagger.v2 import v2_upsampling_prompt, V2_ALL_MODELS
from tagger.utils import (gradio_copy_text, gradio_copy_prompt, COPY_ACTION_JS,
    V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS, V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
from tagger.tagger import (predict_tags_wd, convert_danbooru_to_e621_prompt,
    remove_specific_prompt, insert_recom_prompt, compose_prompt_to_copy,
    translate_prompt, select_random_character)
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
def description_ui():
    gr.Markdown(
        """
## Danbooru Tags Transformer V2 Demo with WD Tagger & SD3 Long Captioner
(Image =>) Prompt => Upsampled longer prompt
- Mod of p1atdev's [Danbooru Tags Transformer V2 Demo](https://huggingface.co/spaces/p1atdev/danbooru-tags-transformer-v2) and [WD Tagger with 🤗 transformers](https://huggingface.co/spaces/p1atdev/wd-tagger-transformers).
- Models: p1atdev's [wd-swinv2-tagger-v3-hf](https://huggingface.co/p1atdev/wd-swinv2-tagger-v3-hf), [dart-v2-moe-sft](https://huggingface.co/p1atdev/dart-v2-moe-sft), [dart-v2-sft](https://huggingface.co/p1atdev/dart-v2-sft)\
, gokaygokay's [Florence-2-SD3-Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner)
"""
    )


MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
MIN_IMAGE_SIZE = 256

css = """
#container { margin: 0 auto; !important; }
#col-container { margin: 0 auto; !important; }
#result { max-width: 520px; max-height: 520px; width: 520px; height: 520px; margin: 0px auto; object-fit: contain; !important; }
.lora { min-width: 480px; !important; }
.title { font-size: 3em; align-items: center; text-align: center; }
.info { align-items: center; text-align: center; }
.desc [src$='#float'] { float: right; margin: 20px; }
.image { margin: 0px auto; object-fit: contain; }
"""

with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60, 3600)) as demo:
    gr.Markdown("# Votepurchase Multiple Model", elem_classes="title")
    state = gr.State(value={})
    with gr.Tab("Image Generator"):
        with gr.Column(elem_id="col-container"):
            with gr.Row():
                prompt = gr.Text(label="Prompt", show_label=False, lines=1, max_lines=8, placeholder="Enter your prompt", container=False)
            
            with gr.Row():
                run_button = gr.Button("Run", variant="primary", scale=5)
                run_translate_button = gr.Button("Run with LLM Enhance", variant="secondary", scale=3)
                auto_trans = gr.Checkbox(label="Auto translate to English", value=False, scale=2)

            result = gr.Image(label="Result", elem_id="result", format="png", type="filepath", show_label=False, interactive=False,
                              show_download_button=True, show_share_button=False, container=True)

            with gr.Accordion("History", open=False):
                history_files = gr.Files(interactive=False, visible=False)
                history_gallery = gr.Gallery(label="History", columns=6, object_fit="contain", format="png", interactive=False, show_share_button=False,
                show_download_button=True)
                history_clear_button = gr.Button(value="Clear History", variant="secondary")
                history_clear_button.click(lambda: ([], []), None, [history_gallery, history_files], queue=False, show_api=False)

            with gr.Accordion("Advanced Settings", open=True):
                task = gr.Dropdown(label="Task", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
                with gr.Tab("Generation Settings"):
                    with gr.Row():
                        negative_prompt = gr.Text(label="Negative prompt", lines=1, max_lines=6, placeholder="Enter a negative prompt", show_copy_button=True,
                                                value="(low quality, worst quality:1.2), very displeasing, watermark, signature, ugly")
                    with gr.Accordion("Prompt Settings", open=False):
                        with gr.Row():
                            quality_selector = gr.Radio(label="Quality Tag Presets", interactive=True, choices=list(preset_quality.keys()), value="None", scale=3)
                            style_selector = gr.Radio(label="Style Presets", interactive=True, choices=list(preset_styles.keys()), value="None", scale=3)
                        with gr.Row():
                            recom_prompt = gr.Checkbox(label="Recommended prompt", value=True, scale=1)
                            prompt_syntax = gr.Dropdown(label="Prompt Syntax", choices=PROMPT_W_OPTIONS, value=PROMPT_W_OPTIONS[1][1])
                    with gr.Row():
                        with gr.Column(scale=4):
                            model_name = gr.Dropdown(label="Model", info="You can enter a huggingface model repo_id to want to use.",
                                                    choices=get_diffusers_model_list(), value=get_diffusers_model_list()[0],
                                                    allow_custom_value=True, interactive=True, min_width=320)
                            model_info = gr.Markdown(elem_classes="info")
                        with gr.Column(scale=1):
                            model_detail = gr.Checkbox(label="Show detail of model in list", value=False)
                    with gr.Row():
                        seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                        gpu_duration = gr.Slider(label="GPU time duration (seconds)", minimum=5, maximum=240, value=59)
                    with gr.Row():
                        width = gr.Slider(label="Width", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
                        height = gr.Slider(label="Height", minimum=MIN_IMAGE_SIZE, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
                        guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
                        guidance_rescale = gr.Slider(label="CFG rescale", value=0., step=0.01, minimum=0., maximum=1.5)
                    with gr.Row():
                        num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
                        pag_scale = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
                        clip_skip = gr.Checkbox(value=True, label="Layer 2 Clip Skip")
                        free_u = gr.Checkbox(value=False, label="FreeU")
                    with gr.Row():
                        sampler = gr.Dropdown(label="Sampler", choices=get_samplers(), value="Euler")
                        schedule_type = gr.Dropdown(label="Schedule type", choices=SCHEDULE_TYPE_OPTIONS, value=SCHEDULE_TYPE_OPTIONS[0])
                        schedule_prediction_type = gr.Dropdown(label="Discrete Sampling Type", choices=SCHEDULE_PREDICTION_TYPE_OPTIONS, value=SCHEDULE_PREDICTION_TYPE_OPTIONS[0])
                        vae_model = gr.Dropdown(label="VAE Model", choices=get_vaes(), value=get_vaes()[0])
                    with gr.Accordion("Other Settings", open=False):
                        with gr.Accordion("Textual inversion", open=True):
                            active_textual_inversion = gr.Checkbox(value=False, label="Active Textual Inversion in prompt")
                            use_textual_inversion = gr.CheckboxGroup(choices=get_ti_choices(model_name.value) if active_textual_inversion.value else [], value=None, label="Use Textual Invertion in prompt")

                with gr.Tab("LoRA"):
                    def lora_dropdown(label, visible=True):
                        return gr.Dropdown(label=label, choices=get_all_lora_tupled_list(), value="", allow_custom_value=True, elem_classes="lora", min_width=320, visible=visible)

                    def lora_scale_slider(label, visible=True):
                        return gr.Slider(minimum=-2, maximum=2, step=0.01, value=1.00, label=label, visible=visible)
                    
                    def lora_textbox():
                        return gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
                    
                    with gr.Row():
                        with gr.Column():
                            with gr.Row():
                                lora1 = lora_dropdown("LoRA 1")
                                lora1_wt = lora_scale_slider("LoRA 1: weight")
                            with gr.Row():
                                lora1_info = lora_textbox()
                                lora1_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora1_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora2 = lora_dropdown("LoRA 2")
                                lora2_wt = lora_scale_slider("LoRA 2: weight")
                            with gr.Row():
                                lora2_info = lora_textbox()
                                lora2_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora2_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora3 = lora_dropdown("LoRA 3")
                                lora3_wt = lora_scale_slider("LoRA 3: weight")
                            with gr.Row():
                                lora3_info = lora_textbox()
                                lora3_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora3_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora4 = lora_dropdown("LoRA 4")
                                lora4_wt = lora_scale_slider("LoRA 4: weight")
                            with gr.Row():
                                lora4_info = lora_textbox()
                                lora4_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora4_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora5 = lora_dropdown("LoRA 5")
                                lora5_wt = lora_scale_slider("LoRA 5: weight")
                            with gr.Row():
                                lora5_info = lora_textbox()
                                lora5_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora5_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora6 = lora_dropdown("LoRA 6", visible=False)
                                lora6_wt = lora_scale_slider("LoRA 6: weight", visible=False)
                            with gr.Row():
                                lora6_info = lora_textbox()
                                lora6_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora6_md = gr.Markdown(value="", visible=False)
                        with gr.Column():
                            with gr.Row():
                                lora7 = lora_dropdown("LoRA 7", visible=False)
                                lora7_wt = lora_scale_slider("LoRA 7: weight", visible=False)
                            with gr.Row():
                                lora7_info = lora_textbox()
                                lora7_copy = gr.Button(value="Copy example to prompt", visible=False)
                            lora7_md = gr.Markdown(value="", visible=False)
                    with gr.Accordion("From URL", open=True, visible=True):
                        with gr.Row():
                            lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=CIVITAI_BASEMODEL, value=["Pony", "Illustrious", "SDXL 1.0"])
                            lora_search_civitai_sort = gr.Radio(label="Sort", choices=CIVITAI_SORT, value="Highest Rated")
                            lora_search_civitai_period = gr.Radio(label="Period", choices=CIVITAI_PERIOD, value="AllTime")
                        with gr.Row():
                            lora_search_civitai_query = gr.Textbox(label="Query", placeholder="oomuro sakurako...", lines=1)
                            lora_search_civitai_tag = gr.Dropdown(label="Tag", choices=get_civitai_tag(), value=get_civitai_tag()[0], allow_custom_value=True)
                            lora_search_civitai_user = gr.Textbox(label="Username", lines=1)
                        lora_search_civitai_submit = gr.Button("Search on Civitai")
                        with gr.Row():
                            lora_search_civitai_json = gr.JSON(value={}, visible=False)
                            lora_search_civitai_desc = gr.Markdown(value="", visible=False, elem_classes="desc")
                        with gr.Accordion("Select from Gallery", open=False):
                            lora_search_civitai_gallery = gr.Gallery([], label="Results", allow_preview=False, columns=5, show_share_button=False, interactive=False)
                        lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
                        lora_download_url = gr.Textbox(label="LoRA's download URL", placeholder="https://civitai.com/api/download/models/28907", info="It has to be .safetensors files, and you can also download them from Hugging Face.", lines=1)
                        lora_download = gr.Button("Get and set LoRA and apply to prompt")
                
                with gr.Tab("ControlNet / Img2img / Inpaint"):
                    task_sel = gr.Radio(label="Task Selector", choices=SDXL_TASK, value=TASK_MODEL_LIST[0])
                    with gr.Row():
                        with gr.Column():
                            #image_control = gr.Image(label="Image ControlNet / Inpaint / Img2img", type="filepath", height=384, sources=["upload", "clipboard", "webcam"], show_share_button=False)
                            image_control = gr.ImageEditor(label="Image ControlNet / Inpaint / Img2img", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
                                                        show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
                                                        brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image")
                            result_to_ic_button = gr.Button("Get image from generated result")
                        image_mask = gr.Image(label="Image Mask", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image")
                    with gr.Row():
                        strength = gr.Slider(minimum=0.01, maximum=1.0, step=0.01, value=0.55, label="Strength",
                                            info="This option adjusts the level of changes for img2img, repaint and inpaint.")
                        image_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=1024, label="Image Resolution",
                                                    info="The maximum proportional size of the generated image based on the uploaded image.")
                    with gr.Row():
                        controlnet_model = gr.Dropdown(label="ControlNet model", choices=DIFFUSERS_CONTROLNET_MODEL, value=DIFFUSERS_CONTROLNET_MODEL[0], allow_custom_value=True)
                    with gr.Row():
                        control_net_output_scaling = gr.Slider(minimum=0, maximum=5.0, step=0.1, value=1, label="ControlNet Output Scaling in UNet")
                        control_net_start_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=0, label="ControlNet Start Threshold (%)")
                        control_net_stop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, value=1, label="ControlNet Stop Threshold (%)")
                    with gr.Row():
                        preprocessor_name = gr.Dropdown(label="Preprocessor Name", choices=TASK_AND_PREPROCESSORS["canny"])
                    with gr.Row():
                        preprocess_resolution = gr.Slider(minimum=64, maximum=2048, step=64, value=512, label="Preprocessor Resolution")
                        low_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=100, label="'CANNY' low threshold")
                        high_threshold = gr.Slider(minimum=1, maximum=255, step=1, value=200, label="'CANNY' high threshold")
                    with gr.Row():
                        value_threshold = gr.Slider(minimum=1, maximum=2.0, step=0.01, value=0.1, label="'MLSD' Hough value threshold")
                        distance_threshold = gr.Slider(minimum=1, maximum=20.0, step=0.01, value=0.1, label="'MLSD' Hough distance threshold")
                    recolor_gamma_correction = gr.Number(minimum=0., maximum=25., value=1., step=0.001, label="'RECOLOR' gamma correction")
                    tile_blur_sigma = gr.Number(minimum=0, maximum=100, value=9, step=1, label="'TILE' blur sigma")

                with gr.Tab("IP-Adapter"):
                    with gr.Accordion("IP-Adapter 1", open=True, visible=True):
                        with gr.Row():
                            with gr.Column():
                                #image_ip1 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
                                image_ip1 = gr.ImageEditor(label="IP Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
                                                        show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
                                                        brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image")
                                result_to_ip1_button = gr.Button("Get image from generated result")
                            mask_ip1 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image")
                        with gr.Row():
                            model_ip1 = gr.Dropdown(value="plus_face", label="Model", choices=IP_MODELS)
                            mode_ip1 = gr.Dropdown(value="original", label="Mode", choices=MODE_IP_OPTIONS)
                        scale_ip1 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")
                    with gr.Accordion("IP-Adapter 2", open=True, visible=True):
                        with gr.Row():
                            with gr.Column():
                                #image_ip2 = gr.Image(label="IP Image", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False)
                                image_ip2 = gr.ImageEditor(label="IP Image", type="filepath", sources=["upload", "clipboard", "webcam"], image_mode='RGB',
                                                        show_share_button=False, show_fullscreen_button=False, layers=False, canvas_size=(384, 384), width=384, height=512,
                                                        brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed", default_size=32), eraser=gr.Eraser(default_size="32"), elem_classes="image")
                                result_to_ip2_button = gr.Button("Get image from generated result")
                            mask_ip2 = gr.Image(label="IP Mask (optional)", type="filepath", height=384, sources=["upload", "clipboard"], show_share_button=False, elem_classes="image")
                        with gr.Row():
                            model_ip2 = gr.Dropdown(value="base", label="Model", choices=IP_MODELS)
                            mode_ip2 = gr.Dropdown(value="style", label="Mode", choices=MODE_IP_OPTIONS)
                        scale_ip2 = gr.Slider(minimum=0., maximum=2., step=0.01, value=0.7, label="Scale")

                with gr.Tab("Inpaint Mask Maker"):
                    with gr.Row():
                        with gr.Column():
                            image_base = gr.ImageEditor(sources=["upload", "clipboard", "webcam"],
                                brush=gr.Brush(default_size="32", color_mode="fixed", colors=["rgba(0, 0, 0, 1)", "rgba(0, 0, 0, 0.1)", "rgba(255, 255, 255, 0.1)"]),
                                eraser=gr.Eraser(default_size="32"), show_share_button=False, show_fullscreen_button=False,
                                canvas_size=(384, 384), width=384, height=512, elem_classes="image")
                            result_to_cm_button = gr.Button("Get image from generated result")
                            invert_mask = gr.Checkbox(value=False, label="Invert mask")
                            cm_btn = gr.Button("Create mask")
                        with gr.Column():
                            img_source = gr.Image(interactive=False, height=384, show_share_button=False, elem_classes="image")
                            img_result = gr.Image(label="Mask image", show_label=True, interactive=False, height=384, show_share_button=False, elem_classes="image")
                            cm_btn_send = gr.Button("Send to ControlNet / Img2img / Inpaint")
                            with gr.Row():
                                cm_btn_send_ip1 = gr.Button("Send to IP-Adapter 1")
                                cm_btn_send_ip2 = gr.Button("Send to IP-Adapter 2")
                        cm_btn.click(create_mask_now, [image_base, invert_mask], [img_source, img_result], show_api=False)
                        def send_img(img_source, img_result):
                            return img_source, img_result
                        cm_btn_send.click(send_img, [img_source, img_result], [image_control, image_mask], queue=False, show_api=False)
                        cm_btn_send_ip1.click(send_img, [img_source, img_result], [image_ip1, mask_ip1], queue=False, show_api=False)
                        cm_btn_send_ip2.click(send_img, [img_source, img_result], [image_ip2, mask_ip2], queue=False, show_api=False)

                with gr.Tab("Hires fix / Detailfix / Face restoration"):
                    with gr.Accordion("Hires fix", open=True):
                        with gr.Row():
                            upscaler_model_path = gr.Dropdown(label="Upscaler", choices=UPSCALER_KEYS, value=UPSCALER_KEYS[0])
                            upscaler_increases_size = gr.Slider(minimum=1.1, maximum=4., step=0.1, value=1.2, label="Upscale by")
                            upscaler_tile_size = gr.Slider(minimum=0, maximum=512, step=16, value=0, label="Upscaler Tile Size", info="0 = no tiling")
                            upscaler_tile_overlap = gr.Slider(minimum=0, maximum=48, step=1, value=8, label="Upscaler Tile Overlap")
                        with gr.Row():
                            hires_steps = gr.Slider(minimum=0, value=30, maximum=100, step=1, label="Hires Steps")
                            hires_denoising_strength = gr.Slider(minimum=0.1, maximum=1.0, step=0.01, value=0.55, label="Hires Denoising Strength")
                            hires_sampler = gr.Dropdown(label="Hires Sampler", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
                            hires_schedule_list = ["Use same schedule type"] + SCHEDULE_TYPE_OPTIONS
                            hires_schedule_type = gr.Dropdown(label="Hires Schedule type", choices=hires_schedule_list, value=hires_schedule_list[0])
                            hires_guidance_scale = gr.Slider(minimum=-1., maximum=30., step=0.5, value=-1., label="Hires CFG", info="If the value is -1, the main CFG will be used")
                        with gr.Row():
                            hires_prompt = gr.Textbox(label="Hires Prompt", placeholder="Main prompt will be use", lines=3)
                            hires_negative_prompt = gr.Textbox(label="Hires Negative Prompt", placeholder="Main negative prompt will be use", lines=3)
                    with gr.Accordion("Detail fix", open=True):
                        with gr.Row():
                            # Adetailer Inpaint Only
                            adetailer_inpaint_only = gr.Checkbox(label="Inpaint only", value=True)
                            # Adetailer Verbose
                            adetailer_verbose = gr.Checkbox(label="Verbose", value=False)
                            # Adetailer Sampler
                            adetailer_sampler = gr.Dropdown(label="Adetailer sampler:", choices=POST_PROCESSING_SAMPLER, value=POST_PROCESSING_SAMPLER[0])
                        with gr.Accordion("Detailfix A", open=True, visible=True):
                            # Adetailer A
                            adetailer_active_a = gr.Checkbox(label="Enable Adetailer A", value=False)
                            prompt_ad_a = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
                            negative_prompt_ad_a = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
                            with gr.Row():
                                strength_ad_a = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
                                face_detector_ad_a = gr.Checkbox(label="Face detector", value=False)
                                person_detector_ad_a = gr.Checkbox(label="Person detector", value=True)
                                hand_detector_ad_a = gr.Checkbox(label="Hand detector", value=False)
                            with gr.Row():
                                mask_dilation_a = gr.Number(label="Mask dilation:", value=4, minimum=1)
                                mask_blur_a = gr.Number(label="Mask blur:", value=4, minimum=1)
                                mask_padding_a = gr.Number(label="Mask padding:", value=32, minimum=1)
                        with gr.Accordion("Detailfix B", open=True, visible=True):
                            # Adetailer B
                            adetailer_active_b = gr.Checkbox(label="Enable Adetailer B", value=False)
                            prompt_ad_b = gr.Textbox(label="Main prompt", placeholder="Main prompt will be use", lines=3)
                            negative_prompt_ad_b = gr.Textbox(label="Negative prompt", placeholder="Main negative prompt will be use", lines=3)
                            with gr.Row():
                                strength_ad_b = gr.Number(label="Strength:", value=0.35, step=0.01, minimum=0.01, maximum=1.0)
                                face_detector_ad_b = gr.Checkbox(label="Face detector", value=False)
                                person_detector_ad_b = gr.Checkbox(label="Person detector", value=True)
                                hand_detector_ad_b = gr.Checkbox(label="Hand detector", value=False)
                            with gr.Row():
                                mask_dilation_b = gr.Number(label="Mask dilation:", value=4, minimum=1)
                                mask_blur_b = gr.Number(label="Mask blur:", value=4, minimum=1)
                                mask_padding_b = gr.Number(label="Mask padding:", value=32, minimum=1)
                    with gr.Accordion("Face restoration", open=True, visible=True):
                        face_rest_options = [None] + FACE_RESTORATION_MODELS
                        with gr.Row():
                            face_restoration_model = gr.Dropdown(label="Face restoration model", choices=face_rest_options, value=face_rest_options[0])
                            face_restoration_visibility = gr.Slider(minimum=0., maximum=1., step=0.001, value=1., label="Visibility")
                            face_restoration_weight = gr.Slider(minimum=0., maximum=1., step=0.001, value=.5, label="Weight", info="(0 = maximum effect, 1 = minimum effect)")

                with gr.Tab("Translation Settings"):
                    chatbot = gr.Chatbot(render_markdown=False, visible=False) # component for auto-translation
                    chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0][1], allow_custom_value=True, label="Model")
                    chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0][1]), label="Model info")
                    chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0][1]), label="Message format")
                    with gr.Row():
                        chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
                        chat_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
                        chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
                        chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
                        chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
                    chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")

        examples = gr.Examples(
            examples = [
                ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
                ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
                ["kafuu chino, 1girl, solo"],
                ["1girl"],
                ["beautiful sunset"],
            ],
            inputs=[prompt],
            cache_examples=False,
        )

    model_name.change(update_task_options, [model_name, task], [task], queue=False, show_api=False)\
    .success(update_task_options, [model_name, task_sel], [task_sel], queue=False, show_api=False)
    task_sel.select(lambda x: x, [task_sel], [task], queue=False, show_api=False)
    task.change(change_preprocessor_choices, [task], [preprocessor_name], queue=False, show_api=False)\
    .success(lambda x: x, [task], [task_sel], queue=False, show_api=False)
    active_textual_inversion.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False)
    model_name.change(update_textual_inversion, [active_textual_inversion, model_name], [use_textual_inversion], queue=False, show_api=False)
    use_textual_inversion.change(set_textual_inversion_prompt, [use_textual_inversion, prompt, negative_prompt, prompt_syntax], [prompt, negative_prompt])
    result_to_cm_button.click(lambda x: x, [result], [image_base], queue=False, show_api=False)
    result_to_ic_button.click(lambda x: x, [result], [image_control], queue=False, show_api=False)
    result_to_ip1_button.click(lambda x: x, [result], [image_ip1], queue=False, show_api=False)
    result_to_ip2_button.click(lambda x: x, [result], [image_ip2], queue=False, show_api=False)

    gr.on( #lambda x: None, inputs=None, outputs=result).then(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
                guidance_scale, num_inference_steps, model_name,
                lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
                lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
                sampler, vae_model, schedule_type, schedule_prediction_type,
                clip_skip, pag_scale, free_u, guidance_rescale,
                image_control, image_mask, strength, image_resolution,
                controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
                preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
                value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
                image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
                image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
                upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength,
                hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
                adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
                prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
                mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
                face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
                active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt],
        outputs=[result],
        queue=True,
        show_progress="full",
        show_api=True,
    )

    gr.on( #lambda x: None, inputs=None, outputs=result).then(
        triggers=[run_translate_button.click],
        fn=_infer, # dummy fn for api
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
                guidance_scale, num_inference_steps, model_name,
                lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
                lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
                sampler, vae_model, schedule_type, schedule_prediction_type,
                clip_skip, pag_scale, free_u, guidance_rescale,
                image_control, image_mask, strength, image_resolution,
                controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
                preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
                value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
                image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
                image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
                upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength,
                hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
                adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
                prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
                mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
                face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
                active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt],
        outputs=[result],
        queue=False,
        show_api=True,
        api_name="infer_translate",
    ).success(
        fn=dolphin_respond_auto,
        inputs=[prompt, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp, state],
        outputs=[chatbot, result, prompt],
        queue=True,
        show_progress="full",
        show_api=False,
    ).success(
        fn=dolphin_parse_simple,
        inputs=[prompt, chatbot, state],
        outputs=[prompt],
        queue=False,
        show_api=False,
    ).success(
        fn=infer,
        inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
                guidance_scale, num_inference_steps, model_name,
                lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt,
                lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, task, prompt_syntax,
                sampler, vae_model, schedule_type, schedule_prediction_type,
                clip_skip, pag_scale, free_u, guidance_rescale,
                image_control, image_mask, strength, image_resolution,
                controlnet_model, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
                preprocessor_name, preprocess_resolution, low_threshold, high_threshold,
                value_threshold, distance_threshold, recolor_gamma_correction, tile_blur_sigma,
                image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
                image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2,
                upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap, hires_steps, hires_denoising_strength,
                hires_sampler, hires_schedule_type, hires_guidance_scale, hires_prompt, hires_negative_prompt,
                adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a,
                prompt_ad_a, negative_prompt_ad_a, strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a,
                mask_dilation_a, mask_blur_a, mask_padding_a, adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b,
                face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b, mask_dilation_b, mask_blur_b, mask_padding_b,
                active_textual_inversion, face_restoration_model, face_restoration_visibility, face_restoration_weight, gpu_duration, auto_trans, recom_prompt],
        outputs=[result],
        queue=True,
        show_progress="full",
        show_api=False,
    ).success(lambda: None, None, chatbot, queue=False, show_api=False)\
    .success(pass_result, [result], [result], queue=False, show_api=False) # dummy fn for api

    result.change(save_image_history, [result, history_gallery, history_files, model_name], [history_gallery, history_files], queue=False, show_api=False)

    gr.on(
        triggers=[lora1.change, lora1_wt.change, lora2.change, lora2_wt.change, lora3.change, lora3_wt.change,
                  lora4.change, lora4_wt.change, lora5.change, lora5_wt.change, lora6.change, lora6_wt.change, lora7.change, lora7_wt.change, prompt_syntax.change],
        fn=update_loras,
        inputs=[prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt],
        outputs=[prompt, lora1, lora1_wt, lora1_info, lora1_copy, lora1_md,
                 lora2, lora2_wt, lora2_info, lora2_copy, lora2_md, lora3, lora3_wt, lora3_info, lora3_copy, lora3_md, 
                 lora4, lora4_wt, lora4_info, lora4_copy, lora4_md, lora5, lora5_wt, lora5_info, lora5_copy, lora5_md,
                 lora6, lora6_wt, lora6_info, lora6_copy, lora6_md, lora7, lora7_wt, lora7_info, lora7_copy, lora7_md],
        queue=False,
        trigger_mode="once",
        show_api=False,
    )
    lora1_copy.click(apply_lora_prompt, [prompt, lora1_info], [prompt], queue=False, show_api=False)
    lora2_copy.click(apply_lora_prompt, [prompt, lora2_info], [prompt], queue=False, show_api=False)
    lora3_copy.click(apply_lora_prompt, [prompt, lora3_info], [prompt], queue=False, show_api=False)
    lora4_copy.click(apply_lora_prompt, [prompt, lora4_info], [prompt], queue=False, show_api=False)
    lora5_copy.click(apply_lora_prompt, [prompt, lora5_info], [prompt], queue=False, show_api=False)
    lora6_copy.click(apply_lora_prompt, [prompt, lora6_info], [prompt], queue=False, show_api=False)
    lora7_copy.click(apply_lora_prompt, [prompt, lora7_info], [prompt], queue=False, show_api=False)

    gr.on(
        triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
        fn=search_civitai_lora,
        inputs=[lora_search_civitai_query, lora_search_civitai_basemodel, lora_search_civitai_sort, lora_search_civitai_period, lora_search_civitai_tag, lora_search_civitai_user, lora_search_civitai_gallery],
        outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query, lora_search_civitai_gallery],
        scroll_to_output=True,
        queue=True,
        show_api=False,
    )
    lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True)  # fn for api
    lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
    gr.on(
        triggers=[lora_download.click, lora_download_url.submit],
        fn=download_my_lora,
        inputs=[lora_download_url, lora1, lora2, lora3, lora4, lora5, lora6, lora7],
        outputs=[lora1, lora2, lora3, lora4, lora5, lora6, lora7],
        scroll_to_output=True,
        queue=True,
        show_api=False,
    )
    lora_search_civitai_gallery.select(update_civitai_selection, None, [lora_search_civitai_result], queue=False, show_api=False)

    #recom_prompt.change(enable_model_recom_prompt, [recom_prompt], [recom_prompt], queue=False, show_api=False)
    gr.on(
        triggers=[quality_selector.change, style_selector.change],
        fn=process_style_prompt,
        inputs=[prompt, negative_prompt, style_selector, quality_selector],
        outputs=[prompt, negative_prompt],
        queue=False,
        trigger_mode="once",
        show_api=False,
    )

    model_detail.change(enable_diffusers_model_detail, [model_detail, model_name, state], [model_detail, model_name, state], queue=False, show_api=False)
    model_name.change(get_t2i_model_info, [model_name], [model_info], queue=False, show_api=False)

    chat_model.change(select_dolphin_model, [chat_model, state], [chat_model, chat_format, chat_model_info, state], queue=True, show_progress="full", show_api=False)\
    .success(lambda: None, None, chatbot, queue=False, show_api=False)
    chat_format.change(select_dolphin_format, [chat_format, state], [chat_format, state], queue=False, show_api=False)\
    .success(lambda: None, None, chatbot, queue=False, show_api=False)

    # Tagger
    with gr.Tab("Tags Transformer with Tagger"):
        with gr.Column():
                with gr.Group():
                    input_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                    with gr.Accordion(label="Advanced options", open=False):
                        general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                        character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                        input_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
                        recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
                    image_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
                    keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
                    generate_from_image_btn = gr.Button(value="GENERATE TAGS FROM IMAGE", size="lg", variant="primary")
                with gr.Group():
                    with gr.Row():
                        input_character = gr.Textbox(label="Character tags", placeholder="hatsune miku")
                        input_copyright = gr.Textbox(label="Copyright tags", placeholder="vocaloid")
                        random_character = gr.Button(value="Random character 🎲", size="sm")
                    input_general = gr.TextArea(label="General tags", lines=4, placeholder="1girl, ...", value="")
                    input_tags_to_copy = gr.Textbox(value="", visible=False)
                    with gr.Row():
                        copy_input_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                        copy_prompt_btn_input = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
                    translate_input_prompt_button = gr.Button(value="Translate prompt to English", size="sm", variant="secondary")
                    tag_type = gr.Radio(label="Output tag conversion", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="e621", visible=False)
                    input_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="explicit")
                    with gr.Accordion(label="Advanced options", open=False):
                        input_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square")
                        input_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="very_long")
                        input_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")                    
                        input_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
                        model_name = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
                        dummy_np = gr.Textbox(label="Negative prompt", value="", visible=False)
                        recom_animagine = gr.Textbox(label="Animagine reccomended prompt", value="Animagine", visible=False)
                        recom_pony = gr.Textbox(label="Pony reccomended prompt", value="Pony", visible=False)
                    generate_btn = gr.Button(value="GENERATE TAGS", size="lg", variant="primary")
                with gr.Row():
                    with gr.Group():
                        output_text = gr.TextArea(label="Output tags", interactive=False, show_copy_button=True)
                        with gr.Row():
                            copy_btn = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                            copy_prompt_btn = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)
                    with gr.Group():
                        output_text_pony = gr.TextArea(label="Output tags (Pony e621 style)", interactive=False, show_copy_button=True)
                        with gr.Row():
                            copy_btn_pony = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
                            copy_prompt_btn_pony = gr.Button(value="Copy to primary prompt", size="sm", interactive=False)

        random_character.click(select_random_character, [input_copyright, input_character], [input_copyright, input_character], queue=False, show_api=False)

        translate_input_prompt_button.click(translate_prompt, [input_general], [input_general], queue=False, show_api=False)
        translate_input_prompt_button.click(translate_prompt, [input_character], [input_character], queue=False, show_api=False)
        translate_input_prompt_button.click(translate_prompt, [input_copyright], [input_copyright], queue=False, show_api=False)

        generate_from_image_btn.click(
            lambda: ("", "", ""), None, [input_copyright, input_character, input_general], queue=False, show_api=False,
        ).success(
            predict_tags_wd,
            [input_image, input_general, image_algorithms, general_threshold, character_threshold],
            [input_copyright, input_character, input_general, copy_input_btn],
            show_api=False,
        ).success(
            predict_tags_fl2_sd3, [input_image, input_general, image_algorithms], [input_general], show_api=False,
        ).success(
            remove_specific_prompt, [input_general, keep_tags], [input_general], queue=False, show_api=False,
        ).success(
            convert_danbooru_to_e621_prompt, [input_general, input_tag_type], [input_general], queue=False, show_api=False,
        ).success(
            insert_recom_prompt, [input_general, dummy_np, recom_prompt], [input_general, dummy_np], queue=False, show_api=False,
        ).success(lambda: gr.update(interactive=True), None, [copy_prompt_btn_input], queue=False, show_api=False)
        copy_input_btn.click(compose_prompt_to_copy, [input_character, input_copyright, input_general], [input_tags_to_copy], show_api=False)\
            .success(gradio_copy_text, [input_tags_to_copy], js=COPY_ACTION_JS, show_api=False)
        copy_prompt_btn_input.click(compose_prompt_to_copy, inputs=[input_character, input_copyright, input_general], outputs=[input_tags_to_copy], show_api=False)\
            .success(gradio_copy_prompt, inputs=[input_tags_to_copy], outputs=[prompt], show_api=False)
        
        generate_btn.click(
            v2_upsampling_prompt,
            [model_name, input_copyright, input_character, input_general,
            input_rating, input_aspect_ratio, input_length, input_identity, input_ban_tags],
            [output_text],
            show_api=False,
        ).success(
            convert_danbooru_to_e621_prompt, [output_text, tag_type], [output_text_pony], queue=False, show_api=False,
        ).success(
            insert_recom_prompt, [output_text, dummy_np, recom_animagine], [output_text, dummy_np], queue=False, show_api=False,
        ).success(
            insert_recom_prompt, [output_text_pony, dummy_np, recom_pony], [output_text_pony, dummy_np], queue=False, show_api=False,
        ).success(lambda: (gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)),
                  None, [copy_btn, copy_btn_pony, copy_prompt_btn, copy_prompt_btn_pony], queue=False, show_api=False)
        copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS, show_api=False)
        copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS, show_api=False)
        copy_prompt_btn.click(gradio_copy_prompt, inputs=[output_text], outputs=[prompt], show_api=False)
        copy_prompt_btn_pony.click(gradio_copy_prompt, inputs=[output_text_pony], outputs=[prompt], show_api=False)

    with gr.Tab("PNG Info"):
        with gr.Row():
            with gr.Column():
                image_metadata = gr.Image(label="Image with metadata", type="pil", sources=["upload"])

            with gr.Column():
                result_metadata = gr.Textbox(label="Metadata", show_label=True, show_copy_button=True, interactive=False, container=True, max_lines=99)

                image_metadata.change(
                    fn=extract_exif_data,
                    inputs=[image_metadata],
                    outputs=[result_metadata],
                )

    with gr.Tab("Upscaler"):
        with gr.Row():
            with gr.Column():
                USCALER_TAB_KEYS = [name for name in UPSCALER_KEYS[9:]]
                image_up_tab = gr.Image(label="Image", type="pil", sources=["upload"])
                upscaler_tab = gr.Dropdown(label="Upscaler", choices=USCALER_TAB_KEYS, value=USCALER_TAB_KEYS[5])
                upscaler_size_tab = gr.Slider(minimum=1., maximum=4., step=0.1, value=1.1, label="Upscale by")
                generate_button_up_tab = gr.Button(value="START UPSCALE", variant="primary")
            with gr.Column():
                result_up_tab = gr.Image(label="Result", type="pil", interactive=False, format="png")
                generate_button_up_tab.click(
                    fn=process_upscale,
                    inputs=[image_up_tab, upscaler_tab, upscaler_size_tab],
                    outputs=[result_up_tab],
                )

    with gr.Tab("Preprocessor", render=True):
        preprocessor_tab()

    gr.LoginButton()
    gr.DuplicateButton(value="Duplicate Space for private use (This demo does not work on CPU. Requires GPU Space)")

demo.queue()
demo.launch(show_error=True, share=True, debug=True)