|
import spaces |
|
import json |
|
import gradio as gr |
|
import os |
|
import re |
|
from pathlib import Path |
|
from PIL import Image |
|
import numpy as np |
|
import shutil |
|
import requests |
|
from requests.adapters import HTTPAdapter |
|
from urllib3.util import Retry |
|
import urllib.parse |
|
import pandas as pd |
|
from huggingface_hub import HfApi, HfFolder, hf_hub_download, snapshot_download |
|
from translatepy import Translator |
|
from unidecode import unidecode |
|
import copy |
|
from datetime import datetime, timezone, timedelta |
|
FILENAME_TIMEZONE = timezone(timedelta(hours=9)) |
|
|
|
|
|
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2, |
|
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, DIFFUSERS_FORMAT_LORAS, |
|
DIRECTORY_LORAS, HF_READ_TOKEN, HF_TOKEN, CIVITAI_API_KEY) |
|
|
|
|
|
MODEL_TYPE_DICT = { |
|
"diffusers:StableDiffusionPipeline": "SD 1.5", |
|
"diffusers:StableDiffusionXLPipeline": "SDXL", |
|
"diffusers:FluxPipeline": "FLUX", |
|
} |
|
|
|
|
|
def get_user_agent(): |
|
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0' |
|
|
|
|
|
def to_list(s): |
|
return [x.strip() for x in s.split(",") if not s == ""] |
|
|
|
|
|
def list_uniq(l): |
|
return sorted(set(l), key=l.index) |
|
|
|
|
|
def list_sub(a, b): |
|
return [e for e in a if e not in b] |
|
|
|
|
|
def is_repo_name(s): |
|
return re.fullmatch(r'^[^/]+?/[^/]+?$', s) |
|
|
|
|
|
translator = Translator() |
|
def translate_to_en(input: str): |
|
try: |
|
output = str(translator.translate(input, 'English')) |
|
except Exception as e: |
|
output = input |
|
print(e) |
|
return output |
|
|
|
|
|
def get_local_model_list(dir_path): |
|
model_list = [] |
|
valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin') |
|
for file in Path(dir_path).glob("*"): |
|
if file.suffix in valid_extensions: |
|
file_path = str(Path(f"{dir_path}/{file.name}")) |
|
model_list.append(file_path) |
|
|
|
return model_list |
|
|
|
|
|
def get_token(): |
|
try: |
|
token = HfFolder.get_token() |
|
except Exception: |
|
token = "" |
|
return token |
|
|
|
|
|
def set_token(token): |
|
try: |
|
HfFolder.save_token(token) |
|
except Exception: |
|
print(f"Error: Failed to save token.") |
|
|
|
|
|
set_token(HF_TOKEN) |
|
|
|
|
|
def split_hf_url(url: str): |
|
try: |
|
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0]) |
|
if len(s) < 4: return "", "", "", "" |
|
repo_id = s[1] |
|
repo_type = "dataset" if s[0] == "datasets" else "model" |
|
subfolder = urllib.parse.unquote(s[2]) if s[2] else None |
|
filename = urllib.parse.unquote(s[3]) |
|
return repo_id, filename, subfolder, repo_type |
|
except Exception as e: |
|
print(e) |
|
|
|
|
|
def download_hf_file(directory, url, force_filename="", hf_token="", progress=gr.Progress(track_tqdm=True)): |
|
repo_id, filename, subfolder, repo_type = split_hf_url(url) |
|
kwargs = {} |
|
if subfolder is not None: kwargs["subfolder"] = subfolder |
|
if force_filename: kwargs["force_filename"] = force_filename |
|
try: |
|
print(f"Start downloading: {url} to {directory}") |
|
path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token, **kwargs) |
|
return path |
|
except Exception as e: |
|
print(f"Download failed: {url} {e}") |
|
return None |
|
|
|
|
|
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0' |
|
|
|
|
|
def request_json_data(url): |
|
model_version_id = url.split('/')[-1] |
|
if "?modelVersionId=" in model_version_id: |
|
match = re.search(r'modelVersionId=(\d+)', url) |
|
model_version_id = match.group(1) |
|
|
|
endpoint_url = f"https://civitai.com/api/v1/model-versions/{model_version_id}" |
|
|
|
params = {} |
|
headers = {'User-Agent': USER_AGENT, 'content-type': 'application/json'} |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
|
|
try: |
|
result = session.get(endpoint_url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) |
|
result.raise_for_status() |
|
json_data = result.json() |
|
return json_data if json_data else None |
|
except Exception as e: |
|
print(f"Error: {e}") |
|
return None |
|
|
|
|
|
class ModelInformation: |
|
def __init__(self, json_data): |
|
self.model_version_id = json_data.get("id", "") |
|
self.model_id = json_data.get("modelId", "") |
|
self.download_url = json_data.get("downloadUrl", "") |
|
self.model_url = f"https://civitai.com/models/{self.model_id}?modelVersionId={self.model_version_id}" |
|
self.filename_url = next( |
|
(v.get("name", "") for v in json_data.get("files", []) if str(self.model_version_id) in v.get("downloadUrl", "")), "" |
|
) |
|
self.filename_url = self.filename_url if self.filename_url else "" |
|
self.description = json_data.get("description", "") |
|
if self.description is None: self.description = "" |
|
self.model_name = json_data.get("model", {}).get("name", "") |
|
self.model_type = json_data.get("model", {}).get("type", "") |
|
self.nsfw = json_data.get("model", {}).get("nsfw", False) |
|
self.poi = json_data.get("model", {}).get("poi", False) |
|
self.images = [img.get("url", "") for img in json_data.get("images", [])] |
|
self.example_prompt = json_data.get("trainedWords", [""])[0] if json_data.get("trainedWords") else "" |
|
self.original_json = copy.deepcopy(json_data) |
|
|
|
|
|
def retrieve_model_info(url): |
|
json_data = request_json_data(url) |
|
if not json_data: |
|
return None |
|
model_descriptor = ModelInformation(json_data) |
|
return model_descriptor |
|
|
|
|
|
def download_things(directory, url, hf_token="", civitai_api_key="", romanize=False): |
|
hf_token = get_token() |
|
url = url.strip() |
|
downloaded_file_path = None |
|
|
|
if "drive.google.com" in url: |
|
original_dir = os.getcwd() |
|
os.chdir(directory) |
|
os.system(f"gdown --fuzzy {url}") |
|
os.chdir(original_dir) |
|
elif "huggingface.co" in url: |
|
url = url.replace("?download=true", "") |
|
|
|
if "/blob/" in url: |
|
url = url.replace("/blob/", "/resolve/") |
|
|
|
filename = unidecode(url.split('/')[-1]) if romanize else url.split('/')[-1] |
|
|
|
download_hf_file(directory, url, filename, hf_token) |
|
|
|
downloaded_file_path = os.path.join(directory, filename) |
|
|
|
elif "civitai.com" in url: |
|
|
|
if not civitai_api_key: |
|
print("\033[91mYou need an API key to download Civitai models.\033[0m") |
|
|
|
model_profile = retrieve_model_info(url) |
|
if model_profile.download_url and model_profile.filename_url: |
|
url = model_profile.download_url |
|
filename = unidecode(model_profile.filename_url) if romanize else model_profile.filename_url |
|
else: |
|
if "?" in url: |
|
url = url.split("?")[0] |
|
filename = "" |
|
|
|
url_dl = url + f"?token={civitai_api_key}" |
|
print(f"Filename: {filename}") |
|
|
|
param_filename = "" |
|
if filename: |
|
param_filename = f"-o '{filename}'" |
|
|
|
aria2_command = ( |
|
f'aria2c --console-log-level=error --summary-interval=10 -c -x 16 ' |
|
f'-k 1M -s 16 -d "{directory}" {param_filename} "{url_dl}"' |
|
) |
|
os.system(aria2_command) |
|
|
|
if param_filename and os.path.exists(os.path.join(directory, filename)): |
|
downloaded_file_path = os.path.join(directory, filename) |
|
|
|
else: |
|
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}") |
|
|
|
return downloaded_file_path |
|
|
|
|
|
def get_download_file(temp_dir, url, civitai_key="", progress=gr.Progress(track_tqdm=True)): |
|
if not "http" in url and is_repo_name(url) and not Path(url).exists(): |
|
print(f"Use HF Repo: {url}") |
|
new_file = url |
|
elif not "http" in url and Path(url).exists(): |
|
print(f"Use local file: {url}") |
|
new_file = url |
|
elif Path(f"{temp_dir}/{url.split('/')[-1]}").exists(): |
|
print(f"File to download alreday exists: {url}") |
|
new_file = f"{temp_dir}/{url.split('/')[-1]}" |
|
else: |
|
print(f"Start downloading: {url}") |
|
before = get_local_model_list(temp_dir) |
|
try: |
|
download_things(temp_dir, url.strip(), HF_TOKEN, civitai_key) |
|
except Exception: |
|
print(f"Download failed: {url}") |
|
return "" |
|
after = get_local_model_list(temp_dir) |
|
new_file = list_sub(after, before)[0] if list_sub(after, before) else "" |
|
if not new_file: |
|
print(f"Download failed: {url}") |
|
return "" |
|
print(f"Download completed: {url}") |
|
return new_file |
|
|
|
|
|
def escape_lora_basename(basename: str): |
|
return basename.replace(".", "_").replace(" ", "_").replace(",", "") |
|
|
|
|
|
def to_lora_key(path: str): |
|
return escape_lora_basename(Path(path).stem) |
|
|
|
|
|
def to_lora_path(key: str): |
|
if Path(key).is_file(): return key |
|
path = Path(f"{DIRECTORY_LORAS}/{escape_lora_basename(key)}.safetensors") |
|
return str(path) |
|
|
|
|
|
def safe_float(input): |
|
output = 1.0 |
|
try: |
|
output = float(input) |
|
except Exception: |
|
output = 1.0 |
|
return output |
|
|
|
|
|
def save_images(images: list[Image.Image], metadatas: list[str]): |
|
from PIL import PngImagePlugin |
|
import uuid |
|
try: |
|
output_images = [] |
|
for image, metadata in zip(images, metadatas): |
|
info = PngImagePlugin.PngInfo() |
|
info.add_text("parameters", metadata) |
|
savefile = f"{str(uuid.uuid4())}.png" |
|
image.save(savefile, "PNG", pnginfo=info) |
|
output_images.append(str(Path(savefile).resolve())) |
|
return output_images |
|
except Exception as e: |
|
print(f"Failed to save image file: {e}") |
|
raise Exception(f"Failed to save image file:") from e |
|
|
|
|
|
def save_gallery_images(images, model_name="", progress=gr.Progress(track_tqdm=True)): |
|
progress(0, desc="Updating gallery...") |
|
basename = f"{model_name.split('/')[-1]}_{datetime.now(FILENAME_TIMEZONE).strftime('%Y%m%d_%H%M%S')}_" |
|
if not images: return images, gr.update() |
|
output_images = [] |
|
output_paths = [] |
|
for i, image in enumerate(images): |
|
filename = f"{basename}{str(i + 1)}.png" |
|
oldpath = Path(image[0]) |
|
newpath = oldpath |
|
try: |
|
if oldpath.exists(): |
|
newpath = oldpath.resolve().rename(Path(filename).resolve()) |
|
except Exception as e: |
|
print(e) |
|
finally: |
|
output_paths.append(str(newpath)) |
|
output_images.append((str(newpath), str(filename))) |
|
progress(1, desc="Gallery updated.") |
|
return gr.update(value=output_images), gr.update(value=output_paths, visible=True) |
|
|
|
|
|
def save_gallery_history(images, files, history_gallery, history_files, progress=gr.Progress(track_tqdm=True)): |
|
if not images or not files: return gr.update(), gr.update() |
|
if not history_gallery: history_gallery = [] |
|
if not history_files: history_files = [] |
|
output_gallery = images + history_gallery |
|
output_files = files + history_files |
|
return gr.update(value=output_gallery), gr.update(value=output_files, visible=True) |
|
|
|
|
|
def save_image_history(image, gallery, files, model_name: str, progress=gr.Progress(track_tqdm=True)): |
|
if not gallery: gallery = [] |
|
if not files: files = [] |
|
try: |
|
basename = f"{model_name.split('/')[-1]}_{datetime.now(FILENAME_TIMEZONE).strftime('%Y%m%d_%H%M%S')}" |
|
if image is None or not isinstance(image, (str, Image.Image, np.ndarray, tuple)): return gr.update(), gr.update() |
|
filename = f"{basename}.png" |
|
if isinstance(image, tuple): image = image[0] |
|
if isinstance(image, str): oldpath = image |
|
elif isinstance(image, Image.Image): |
|
oldpath = "temp.png" |
|
image.save(oldpath) |
|
elif isinstance(image, np.ndarray): |
|
oldpath = "temp.png" |
|
Image.fromarray(image).convert('RGBA').save(oldpath) |
|
oldpath = Path(oldpath) |
|
newpath = oldpath |
|
if oldpath.exists(): |
|
shutil.copy(oldpath.resolve(), Path(filename).resolve()) |
|
newpath = Path(filename).resolve() |
|
files.insert(0, str(newpath)) |
|
gallery.insert(0, (str(newpath), str(filename))) |
|
except Exception as e: |
|
print(e) |
|
finally: |
|
return gr.update(value=gallery), gr.update(value=files, visible=True) |
|
|
|
|
|
def download_private_repo(repo_id, dir_path, is_replace): |
|
if not HF_READ_TOKEN: return |
|
try: |
|
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], token=HF_READ_TOKEN) |
|
except Exception as e: |
|
print(f"Error: Failed to download {repo_id}.") |
|
print(e) |
|
return |
|
if is_replace: |
|
for file in Path(dir_path).glob("*"): |
|
if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']: |
|
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') |
|
file.resolve().rename(newpath.resolve()) |
|
|
|
|
|
private_model_path_repo_dict = {} |
|
|
|
|
|
def get_private_model_list(repo_id, dir_path): |
|
global private_model_path_repo_dict |
|
api = HfApi() |
|
if not HF_READ_TOKEN: return [] |
|
try: |
|
files = api.list_repo_files(repo_id, token=HF_READ_TOKEN) |
|
except Exception as e: |
|
print(f"Error: Failed to list {repo_id}.") |
|
print(e) |
|
return [] |
|
model_list = [] |
|
for file in files: |
|
path = Path(f"{dir_path}/{file}") |
|
if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']: |
|
model_list.append(str(path)) |
|
for model in model_list: |
|
private_model_path_repo_dict[model] = repo_id |
|
return model_list |
|
|
|
|
|
def download_private_file(repo_id, path, is_replace): |
|
file = Path(path) |
|
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file |
|
if not HF_READ_TOKEN or newpath.exists(): return |
|
filename = file.name |
|
dirname = file.parent.name |
|
try: |
|
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, token=HF_READ_TOKEN) |
|
except Exception as e: |
|
print(f"Error: Failed to download {filename}.") |
|
print(e) |
|
return |
|
if is_replace: |
|
file.resolve().rename(newpath.resolve()) |
|
|
|
|
|
def download_private_file_from_somewhere(path, is_replace): |
|
if not path in private_model_path_repo_dict.keys(): return |
|
repo_id = private_model_path_repo_dict.get(path, None) |
|
download_private_file(repo_id, path, is_replace) |
|
|
|
|
|
model_id_list = [] |
|
def get_model_id_list(): |
|
global model_id_list |
|
if len(model_id_list) != 0: return model_id_list |
|
api = HfApi() |
|
model_ids = [] |
|
try: |
|
models_likes = [] |
|
for author in HF_MODEL_USER_LIKES: |
|
models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes")) |
|
models_ex = [] |
|
for author in HF_MODEL_USER_EX: |
|
models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified") |
|
except Exception as e: |
|
print(f"Error: Failed to list {author}'s models.") |
|
print(e) |
|
return model_ids |
|
for model in models_likes: |
|
model_ids.append(model.id) if not model.private else "" |
|
anime_models = [] |
|
real_models = [] |
|
anime_models_flux = [] |
|
real_models_flux = [] |
|
for model in models_ex: |
|
if not model.private and not model.gated: |
|
if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id) |
|
else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id) |
|
model_ids.extend(anime_models) |
|
model_ids.extend(real_models) |
|
model_ids.extend(anime_models_flux) |
|
model_ids.extend(real_models_flux) |
|
model_id_list = model_ids.copy() |
|
return model_ids |
|
|
|
|
|
model_id_list = get_model_id_list() |
|
|
|
|
|
def get_t2i_model_info(repo_id: str): |
|
api = HfApi(token=HF_TOKEN) |
|
try: |
|
if not is_repo_name(repo_id): return "" |
|
model = api.model_info(repo_id=repo_id, timeout=5.0) |
|
except Exception as e: |
|
print(f"Error: Failed to get {repo_id}'s info.") |
|
print(e) |
|
return "" |
|
if model.private or model.gated: return "" |
|
tags = model.tags |
|
info = [] |
|
url = f"https://huggingface.co/{repo_id}/" |
|
if not 'diffusers' in tags: return "" |
|
for k, v in MODEL_TYPE_DICT.items(): |
|
if k in tags: info.append(v) |
|
if model.card_data and model.card_data.tags: |
|
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'])) |
|
info.append(f"DLs: {model.downloads}") |
|
info.append(f"likes: {model.likes}") |
|
info.append(model.last_modified.strftime("lastmod: %Y-%m-%d")) |
|
md = f"Model Info: {', '.join(info)}, [Model Repo]({url})" |
|
return gr.update(value=md) |
|
|
|
|
|
def get_tupled_model_list(model_list): |
|
if not model_list: return [] |
|
tupled_list = [] |
|
for repo_id in model_list: |
|
api = HfApi() |
|
try: |
|
if not api.repo_exists(repo_id): continue |
|
model = api.model_info(repo_id=repo_id) |
|
except Exception as e: |
|
print(e) |
|
continue |
|
if model.private or model.gated: continue |
|
tags = model.tags |
|
info = [] |
|
if not 'diffusers' in tags: continue |
|
for k, v in MODEL_TYPE_DICT.items(): |
|
if k in tags: info.append(v) |
|
if model.card_data and model.card_data.tags: |
|
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl'])) |
|
if "pony" in info: |
|
info.remove("pony") |
|
name = f"{repo_id} (Pony🐴, {', '.join(info)})" |
|
else: |
|
name = f"{repo_id} ({', '.join(info)})" |
|
tupled_list.append((name, repo_id)) |
|
return tupled_list |
|
|
|
|
|
private_lora_dict = {} |
|
try: |
|
with open('lora_dict.json', encoding='utf-8') as f: |
|
d = json.load(f) |
|
for k, v in d.items(): |
|
private_lora_dict[escape_lora_basename(k)] = v |
|
except Exception as e: |
|
print(e) |
|
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy() |
|
civitai_not_exists_list = [] |
|
loras_url_to_path_dict = {} |
|
civitai_last_results = {} |
|
civitai_last_choices = [("", "")] |
|
civitai_last_gallery = [] |
|
all_lora_list = [] |
|
|
|
|
|
private_lora_model_list = [] |
|
def get_private_lora_model_lists(): |
|
global private_lora_model_list |
|
if len(private_lora_model_list) != 0: return private_lora_model_list |
|
models1 = [] |
|
models2 = [] |
|
for repo in HF_LORA_PRIVATE_REPOS1: |
|
models1.extend(get_private_model_list(repo, DIRECTORY_LORAS)) |
|
for repo in HF_LORA_PRIVATE_REPOS2: |
|
models2.extend(get_private_model_list(repo, DIRECTORY_LORAS)) |
|
models = list_uniq(models1 + sorted(models2)) |
|
private_lora_model_list = models.copy() |
|
return models |
|
|
|
|
|
private_lora_model_list = get_private_lora_model_lists() |
|
|
|
|
|
def get_civitai_info(path): |
|
global civitai_not_exists_list |
|
if path in set(civitai_not_exists_list): return ["", "", "", "", ""] |
|
if not Path(path).exists(): return None |
|
user_agent = get_user_agent() |
|
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} |
|
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/' |
|
params = {} |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
import hashlib |
|
with open(path, 'rb') as file: |
|
file_data = file.read() |
|
hash_sha256 = hashlib.sha256(file_data).hexdigest() |
|
url = base_url + hash_sha256 |
|
try: |
|
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) |
|
except Exception as e: |
|
print(e) |
|
return ["", "", "", "", ""] |
|
if not r.ok: return None |
|
json = r.json() |
|
if not 'baseModel' in json: |
|
civitai_not_exists_list.append(path) |
|
return ["", "", "", "", ""] |
|
items = [] |
|
items.append(" / ".join(json['trainedWords'])) |
|
items.append(json['baseModel']) |
|
items.append(json['model']['name']) |
|
items.append(f"https://civitai.com/models/{json['modelId']}") |
|
items.append(json['images'][0]['url']) |
|
return items |
|
|
|
|
|
def get_lora_model_list(): |
|
loras = list_uniq(get_private_lora_model_lists() + DIFFUSERS_FORMAT_LORAS + get_local_model_list(DIRECTORY_LORAS)) |
|
loras.insert(0, "None") |
|
loras.insert(0, "") |
|
return loras |
|
|
|
|
|
def get_all_lora_list(): |
|
global all_lora_list |
|
loras = get_lora_model_list() |
|
all_lora_list = loras.copy() |
|
return loras |
|
|
|
|
|
def get_all_lora_tupled_list(): |
|
global loras_dict |
|
models = get_all_lora_list() |
|
if not models: return [] |
|
tupled_list = [] |
|
for model in models: |
|
|
|
basename = Path(model).stem |
|
key = to_lora_key(model) |
|
items = None |
|
if key in loras_dict.keys(): |
|
items = loras_dict.get(key, None) |
|
else: |
|
items = get_civitai_info(model) |
|
if items != None: |
|
loras_dict[key] = items |
|
name = basename |
|
value = model |
|
if items and items[2] != "": |
|
if items[1] == "Pony": |
|
name = f"{basename} (for {items[1]}🐴, {items[2]})" |
|
else: |
|
name = f"{basename} (for {items[1]}, {items[2]})" |
|
tupled_list.append((name, value)) |
|
return tupled_list |
|
|
|
|
|
def update_lora_dict(path): |
|
global loras_dict |
|
key = escape_lora_basename(Path(path).stem) |
|
if key in loras_dict.keys(): return |
|
items = get_civitai_info(path) |
|
if items == None: return |
|
loras_dict[key] = items |
|
|
|
|
|
def download_lora(dl_urls: str): |
|
global loras_url_to_path_dict |
|
dl_path = "" |
|
before = get_local_model_list(DIRECTORY_LORAS) |
|
urls = [] |
|
for url in [url.strip() for url in dl_urls.split(',')]: |
|
local_path = f"{DIRECTORY_LORAS}/{url.split('/')[-1]}" |
|
if not Path(local_path).exists(): |
|
download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY) |
|
urls.append(url) |
|
after = get_local_model_list(DIRECTORY_LORAS) |
|
new_files = list_sub(after, before) |
|
i = 0 |
|
for file in new_files: |
|
path = Path(file) |
|
if path.exists(): |
|
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') |
|
path.resolve().rename(new_path.resolve()) |
|
loras_url_to_path_dict[urls[i]] = str(new_path) |
|
update_lora_dict(str(new_path)) |
|
dl_path = str(new_path) |
|
i += 1 |
|
return dl_path |
|
|
|
|
|
def copy_lora(path: str, new_path: str): |
|
if path == new_path: return new_path |
|
cpath = Path(path) |
|
npath = Path(new_path) |
|
if cpath.exists(): |
|
try: |
|
shutil.copy(str(cpath.resolve()), str(npath.resolve())) |
|
except Exception as e: |
|
print(e) |
|
return None |
|
update_lora_dict(str(npath)) |
|
return new_path |
|
else: |
|
return None |
|
|
|
|
|
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str): |
|
path = download_lora(dl_urls) |
|
if path: |
|
if not lora1 or lora1 == "None": |
|
lora1 = path |
|
elif not lora2 or lora2 == "None": |
|
lora2 = path |
|
elif not lora3 or lora3 == "None": |
|
lora3 = path |
|
elif not lora4 or lora4 == "None": |
|
lora4 = path |
|
elif not lora5 or lora5 == "None": |
|
lora5 = path |
|
choices = get_all_lora_tupled_list() |
|
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\ |
|
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices) |
|
|
|
|
|
def get_valid_lora_name(query: str, model_name: str): |
|
path = "None" |
|
if not query or query == "None": return "None" |
|
if to_lora_key(query) in loras_dict.keys(): return query |
|
if query in loras_url_to_path_dict.keys(): |
|
path = loras_url_to_path_dict[query] |
|
else: |
|
path = to_lora_path(query.strip().split('/')[-1]) |
|
if Path(path).exists(): |
|
return path |
|
elif "http" in query: |
|
dl_file = download_lora(query) |
|
if dl_file and Path(dl_file).exists(): return dl_file |
|
else: |
|
dl_file = find_similar_lora(query, model_name) |
|
if dl_file and Path(dl_file).exists(): return dl_file |
|
return "None" |
|
|
|
|
|
def get_valid_lora_path(query: str): |
|
path = None |
|
if not query or query == "None": return None |
|
if to_lora_key(query) in loras_dict.keys(): return query |
|
if Path(path).exists(): |
|
return path |
|
else: |
|
return None |
|
|
|
|
|
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float): |
|
wt = lora_wt |
|
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt) |
|
if not result: return wt |
|
wt = safe_float(result[0][0]) |
|
return wt |
|
|
|
|
|
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): |
|
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt |
|
lora1 = get_valid_lora_name(lora1, model_name) |
|
lora2 = get_valid_lora_name(lora2, model_name) |
|
lora3 = get_valid_lora_name(lora3, model_name) |
|
lora4 = get_valid_lora_name(lora4, model_name) |
|
lora5 = get_valid_lora_name(lora5, model_name) |
|
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt |
|
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt) |
|
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt) |
|
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt) |
|
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt) |
|
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt) |
|
on1, label1, tag1, md1 = get_lora_info(lora1) |
|
on2, label2, tag2, md2 = get_lora_info(lora2) |
|
on3, label3, tag3, md3 = get_lora_info(lora3) |
|
on4, label4, tag4, md4 = get_lora_info(lora4) |
|
on5, label5, tag5, md5 = get_lora_info(lora5) |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
prompts = prompt.split(",") if prompt else [] |
|
for p in prompts: |
|
p = str(p).strip() |
|
if "<lora" in p: |
|
result = re.findall(r'<lora:(.+?):(.+?)>', p) |
|
if not result: continue |
|
key = result[0][0] |
|
wt = result[0][1] |
|
path = to_lora_path(key) |
|
if not key in loras_dict.keys() or not path: |
|
path = get_valid_lora_name(path) |
|
if not path or path == "None": continue |
|
if path in lora_paths: |
|
continue |
|
elif not on1: |
|
lora1 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora1_wt = safe_float(wt) |
|
on1 = True |
|
elif not on2: |
|
lora2 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora2_wt = safe_float(wt) |
|
on2 = True |
|
elif not on3: |
|
lora3 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora3_wt = safe_float(wt) |
|
on3 = True |
|
elif not on4: |
|
lora4 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora4_wt = safe_float(wt) |
|
on4, label4, tag4, md4 = get_lora_info(lora4) |
|
elif not on5: |
|
lora5 = path |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
lora5_wt = safe_float(wt) |
|
on5 = True |
|
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt |
|
|
|
|
|
def get_lora_info(lora_path: str): |
|
is_valid = False |
|
tag = "" |
|
label = "" |
|
md = "None" |
|
if not lora_path or lora_path == "None": |
|
print("LoRA file not found.") |
|
return is_valid, label, tag, md |
|
path = Path(lora_path) |
|
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') |
|
if not to_lora_key(str(new_path)) in loras_dict.keys() and str(path) not in set(get_all_lora_list()): |
|
print("LoRA file is not registered.") |
|
return tag, label, tag, md |
|
if not new_path.exists(): |
|
download_private_file_from_somewhere(str(path), True) |
|
basename = new_path.stem |
|
label = f'Name: {basename}' |
|
items = loras_dict.get(basename, None) |
|
if items == None: |
|
items = get_civitai_info(str(new_path)) |
|
if items != None: |
|
loras_dict[basename] = items |
|
if items and items[2] != "": |
|
tag = items[0] |
|
label = f'Name: {basename}' |
|
if items[1] == "Pony": |
|
label = f'Name: {basename} (for Pony🐴)' |
|
if items[4]: |
|
md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})' |
|
elif items[3]: |
|
md = f'[LoRA Model URL]({items[3]})' |
|
is_valid = True |
|
return is_valid, label, tag, md |
|
|
|
|
|
def normalize_prompt_list(tags: list[str]): |
|
prompts = [] |
|
for tag in tags: |
|
tag = str(tag).strip() |
|
if tag: |
|
prompts.append(tag) |
|
return prompts |
|
|
|
|
|
def apply_lora_prompt(prompt: str = "", lora_info: str = ""): |
|
if lora_info == "None": return gr.update(value=prompt) |
|
tags = prompt.split(",") if prompt else [] |
|
prompts = normalize_prompt_list(tags) |
|
|
|
lora_tag = lora_info.replace("/",",") |
|
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else [] |
|
lora_prompts = normalize_prompt_list(lora_tags) |
|
|
|
empty = [""] |
|
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty) |
|
return gr.update(value=prompt) |
|
|
|
|
|
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt): |
|
on1, label1, tag1, md1 = get_lora_info(lora1) |
|
on2, label2, tag2, md2 = get_lora_info(lora2) |
|
on3, label3, tag3, md3 = get_lora_info(lora3) |
|
on4, label4, tag4, md4 = get_lora_info(lora4) |
|
on5, label5, tag5, md5 = get_lora_info(lora5) |
|
lora_paths = [lora1, lora2, lora3, lora4, lora5] |
|
|
|
output_prompt = prompt |
|
if "Classic" in str(prompt_syntax): |
|
prompts = prompt.split(",") if prompt else [] |
|
output_prompts = [] |
|
for p in prompts: |
|
p = str(p).strip() |
|
if "<lora" in p: |
|
result = re.findall(r'<lora:(.+?):(.+?)>', p) |
|
if not result: continue |
|
key = result[0][0] |
|
wt = result[0][1] |
|
path = to_lora_path(key) |
|
if not key in loras_dict.keys() or not path: continue |
|
if path in lora_paths: |
|
output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>") |
|
elif p: |
|
output_prompts.append(p) |
|
lora_prompts = [] |
|
if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>") |
|
if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>") |
|
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>") |
|
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>") |
|
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>") |
|
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""])) |
|
choices = get_all_lora_tupled_list() |
|
|
|
return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\ |
|
gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\ |
|
gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\ |
|
gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\ |
|
gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\ |
|
gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\ |
|
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\ |
|
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\ |
|
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\ |
|
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5) |
|
|
|
|
|
def get_my_lora(link_url, romanize): |
|
l_name = "" |
|
l_path = "" |
|
before = get_local_model_list(DIRECTORY_LORAS) |
|
for url in [url.strip() for url in link_url.split(',')]: |
|
if not Path(f"{DIRECTORY_LORAS}/{url.split('/')[-1]}").exists(): |
|
l_name = download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY, romanize) |
|
after = get_local_model_list(DIRECTORY_LORAS) |
|
new_files = list_sub(after, before) |
|
for file in new_files: |
|
path = Path(file) |
|
if path.exists(): |
|
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') |
|
path.resolve().rename(new_path.resolve()) |
|
update_lora_dict(str(new_path)) |
|
l_path = str(new_path) |
|
new_lora_model_list = get_lora_model_list() |
|
new_lora_tupled_list = get_all_lora_tupled_list() |
|
msg_lora = "Downloaded" |
|
if l_name: |
|
msg_lora += f": <b>{l_name}</b>" |
|
print(msg_lora) |
|
|
|
return gr.update( |
|
choices=new_lora_tupled_list, value=l_path |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
value=msg_lora |
|
) |
|
|
|
|
|
def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)): |
|
progress(0, desc="Uploading...") |
|
file_paths = [file.name for file in files] |
|
progress(1, desc="Uploaded.") |
|
return gr.update(value=file_paths, visible=True), gr.update() |
|
|
|
|
|
def move_file_lora(filepaths): |
|
for file in filepaths: |
|
path = Path(shutil.move(Path(file).resolve(), Path(f"./{DIRECTORY_LORAS}").resolve())) |
|
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}') |
|
path.resolve().rename(newpath.resolve()) |
|
update_lora_dict(str(newpath)) |
|
|
|
new_lora_model_list = get_lora_model_list() |
|
new_lora_tupled_list = get_all_lora_tupled_list() |
|
|
|
return gr.update( |
|
choices=new_lora_tupled_list, value=new_lora_model_list[-1] |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
), gr.update( |
|
choices=new_lora_tupled_list |
|
) |
|
|
|
|
|
CIVITAI_SORT = ["Highest Rated", "Most Downloaded", "Newest"] |
|
CIVITAI_PERIOD = ["AllTime", "Year", "Month", "Week", "Day"] |
|
CIVITAI_BASEMODEL = ["Pony", "SD 1.5", "SDXL 1.0", "Flux.1 D", "Flux.1 S"] |
|
|
|
|
|
def get_civitai_info(path): |
|
global civitai_not_exists_list, loras_url_to_path_dict |
|
default = ["", "", "", "", ""] |
|
if path in set(civitai_not_exists_list): return default |
|
if not Path(path).exists(): return None |
|
user_agent = get_user_agent() |
|
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} |
|
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/' |
|
params = {} |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
import hashlib |
|
with open(path, 'rb') as file: |
|
file_data = file.read() |
|
hash_sha256 = hashlib.sha256(file_data).hexdigest() |
|
url = base_url + hash_sha256 |
|
try: |
|
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) |
|
except Exception as e: |
|
print(e) |
|
return default |
|
else: |
|
if not r.ok: return None |
|
json = r.json() |
|
if 'baseModel' not in json: |
|
civitai_not_exists_list.append(path) |
|
return default |
|
items = [] |
|
items.append(" / ".join(json['trainedWords'])) |
|
items.append(json['baseModel']) |
|
items.append(json['model']['name']) |
|
items.append(f"https://civitai.com/models/{json['modelId']}") |
|
items.append(json['images'][0]['url']) |
|
loras_url_to_path_dict[path] = json['downloadUrl'] |
|
return items |
|
|
|
|
|
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100, |
|
sort: str = "Highest Rated", period: str = "AllTime", tag: str = "", user: str = "", page: int = 1): |
|
user_agent = get_user_agent() |
|
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} |
|
base_url = 'https://civitai.com/api/v1/models' |
|
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'page': int(page), 'nsfw': 'true'} |
|
if query: params["query"] = query |
|
if tag: params["tag"] = tag |
|
if user: params["username"] = user |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
try: |
|
r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30)) |
|
except Exception as e: |
|
print(e) |
|
return None |
|
else: |
|
if not r.ok: return None |
|
json = r.json() |
|
if 'items' not in json: return None |
|
items = [] |
|
for j in json['items']: |
|
for model in j['modelVersions']: |
|
item = {} |
|
if len(allow_model) != 0 and model['baseModel'] not in set(allow_model): continue |
|
item['name'] = j['name'] |
|
item['creator'] = j['creator']['username'] if 'creator' in j.keys() and 'username' in j['creator'].keys() else "" |
|
item['tags'] = j['tags'] if 'tags' in j.keys() else [] |
|
item['model_name'] = model['name'] if 'name' in model.keys() else "" |
|
item['base_model'] = model['baseModel'] if 'baseModel' in model.keys() else "" |
|
item['description'] = model['description'] if 'description' in model.keys() else "" |
|
item['dl_url'] = model['downloadUrl'] |
|
item['md'] = "" |
|
if 'images' in model.keys() and len(model["images"]) != 0: |
|
item['img_url'] = model["images"][0]["url"] |
|
item['md'] += f'<img src="{model["images"][0]["url"]}#float" alt="thumbnail" width="150" height="240"><br>' |
|
else: item['img_url'] = "/home/user/app/null.png" |
|
item['md'] += f'''Model URL: [https://civitai.com/models/{j["id"]}](https://civitai.com/models/{j["id"]})<br>Model Name: {item["name"]}<br> |
|
Creator: {item["creator"]}<br>Tags: {", ".join(item["tags"])}<br>Base Model: {item["base_model"]}<br>Description: {item["description"]}''' |
|
items.append(item) |
|
return items |
|
|
|
|
|
def search_civitai_lora(query, base_model=[], sort=CIVITAI_SORT[0], period=CIVITAI_PERIOD[0], tag="", user="", gallery=[]): |
|
global civitai_last_results, civitai_last_choices, civitai_last_gallery |
|
civitai_last_choices = [("", "")] |
|
civitai_last_gallery = [] |
|
civitai_last_results = {} |
|
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag, user) |
|
if not items: return gr.update(choices=[("", "")], value="", visible=False),\ |
|
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
civitai_last_results = {} |
|
choices = [] |
|
gallery = [] |
|
for item in items: |
|
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model'] |
|
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})" |
|
value = item['dl_url'] |
|
choices.append((name, value)) |
|
gallery.append((item['img_url'], name)) |
|
civitai_last_results[value] = item |
|
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\ |
|
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) |
|
civitai_last_choices = choices |
|
civitai_last_gallery = gallery |
|
result = civitai_last_results.get(choices[0][1], "None") |
|
md = result['md'] if result else "" |
|
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\ |
|
gr.update(visible=True), gr.update(visible=True), gr.update(value=gallery) |
|
|
|
|
|
def update_civitai_selection(evt: gr.SelectData): |
|
try: |
|
selected_index = evt.index |
|
selected = civitai_last_choices[selected_index][1] |
|
return gr.update(value=selected) |
|
except Exception: |
|
return gr.update() |
|
|
|
|
|
def select_civitai_lora(search_result): |
|
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True) |
|
result = civitai_last_results.get(search_result, "None") |
|
md = result['md'] if result else "" |
|
return gr.update(value=search_result), gr.update(value=md, visible=True) |
|
|
|
|
|
def download_my_lora_flux(dl_urls: str, lora): |
|
path = download_lora(dl_urls) |
|
if path: lora = path |
|
choices = get_all_lora_tupled_list() |
|
return gr.update(value=lora, choices=choices) |
|
|
|
|
|
def apply_lora_prompt_flux(lora_info: str): |
|
if lora_info == "None": return "" |
|
lora_tag = lora_info.replace("/",",") |
|
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else [] |
|
lora_prompts = normalize_prompt_list(lora_tags) |
|
prompt = ", ".join(list_uniq(lora_prompts)) |
|
return prompt |
|
|
|
|
|
def update_loras_flux(prompt, lora, lora_wt): |
|
on, label, tag, md = get_lora_info(lora) |
|
choices = get_all_lora_tupled_list() |
|
return gr.update(value=prompt), gr.update(value=lora, choices=choices), gr.update(value=lora_wt),\ |
|
gr.update(value=tag, label=label, visible=on), gr.update(value=md, visible=on) |
|
|
|
|
|
def search_civitai_lora_json(query, base_model): |
|
results = {} |
|
items = search_lora_on_civitai(query, base_model) |
|
if not items: return gr.update(value=results) |
|
for item in items: |
|
results[item['dl_url']] = item |
|
return gr.update(value=results) |
|
|
|
|
|
def get_civitai_tag(): |
|
default = [""] |
|
user_agent = get_user_agent() |
|
headers = {'User-Agent': user_agent, 'content-type': 'application/json'} |
|
base_url = 'https://civitai.com/api/v1/tags' |
|
params = {'limit': 200} |
|
session = requests.Session() |
|
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504]) |
|
session.mount("https://", HTTPAdapter(max_retries=retries)) |
|
url = base_url |
|
try: |
|
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15)) |
|
if not r.ok: return default |
|
j = dict(r.json()).copy() |
|
if "items" not in j.keys(): return default |
|
items = [] |
|
for item in j["items"]: |
|
items.append([str(item.get("name", "")), int(item.get("modelCount", 0))]) |
|
df = pd.DataFrame(items) |
|
df.sort_values(1, ascending=False) |
|
tags = df.values.tolist() |
|
tags = [""] + [l[0] for l in tags] |
|
return tags |
|
except Exception as e: |
|
print(e) |
|
return default |
|
|
|
|
|
LORA_BASE_MODEL_DICT = { |
|
"diffusers:StableDiffusionPipeline": ["SD 1.5"], |
|
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"], |
|
"diffusers:FluxPipeline": ["Flux.1 D", "Flux.1 S"], |
|
} |
|
|
|
|
|
def get_lora_base_model(model_name: str): |
|
api = HfApi(token=HF_TOKEN) |
|
default = ["Pony", "SDXL 1.0"] |
|
try: |
|
model = api.model_info(repo_id=model_name, timeout=5.0) |
|
tags = model.tags |
|
for tag in tags: |
|
if tag in LORA_BASE_MODEL_DICT.keys(): return LORA_BASE_MODEL_DICT.get(tag, default) |
|
except Exception: |
|
return default |
|
return default |
|
|
|
|
|
def find_similar_lora(q: str, model_name: str): |
|
from rapidfuzz.process import extractOne |
|
from rapidfuzz.utils import default_process |
|
query = to_lora_key(q) |
|
print(f"Finding <lora:{query}:...>...") |
|
keys = list(private_lora_dict.keys()) |
|
values = [x[2] for x in list(private_lora_dict.values())] |
|
s = default_process(query) |
|
e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0) |
|
key = "" |
|
if e1: |
|
e = e1[0] |
|
if e in set(keys): key = e |
|
elif e in set(values): key = keys[values.index(e)] |
|
if key: |
|
path = to_lora_path(key) |
|
new_path = to_lora_path(query) |
|
if not Path(path).exists(): |
|
if not Path(new_path).exists(): download_private_file_from_somewhere(path, True) |
|
if Path(path).exists() and copy_lora(path, new_path): return new_path |
|
print(f"Finding <lora:{query}:...> on Civitai...") |
|
civitai_query = Path(query).stem if Path(query).is_file() else query |
|
civitai_query = civitai_query.replace("_", " ").replace("-", " ") |
|
base_model = get_lora_base_model(model_name) |
|
items = search_lora_on_civitai(civitai_query, base_model, 1) |
|
if items: |
|
item = items[0] |
|
path = download_lora(item['dl_url']) |
|
new_path = query if Path(query).is_file() else to_lora_path(query) |
|
if path and copy_lora(path, new_path): return new_path |
|
return None |
|
|
|
|
|
def change_interface_mode(mode: str): |
|
if mode == "Fast": |
|
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(value="Fast") |
|
elif mode == "Simple": |
|
return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\ |
|
gr.update(visible=False), gr.update(value="Standard") |
|
elif mode == "LoRA": |
|
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\ |
|
gr.update(visible=False), gr.update(value="Standard") |
|
else: |
|
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\ |
|
gr.update(visible=True), gr.update(value="Standard") |
|
|
|
|
|
quality_prompt_list = [ |
|
{ |
|
"name": "None", |
|
"prompt": "", |
|
"negative_prompt": "lowres", |
|
}, |
|
{ |
|
"name": "Animagine Common", |
|
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres", |
|
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
}, |
|
{ |
|
"name": "Pony Anime Common", |
|
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres", |
|
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", |
|
}, |
|
{ |
|
"name": "Pony Common", |
|
"prompt": "source_anime, score_9, score_8_up, score_7_up", |
|
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends", |
|
}, |
|
{ |
|
"name": "Animagine Standard v3.0", |
|
"prompt": "masterpiece, best quality", |
|
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name", |
|
}, |
|
{ |
|
"name": "Animagine Standard v3.1", |
|
"prompt": "masterpiece, best quality, very aesthetic, absurdres", |
|
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
}, |
|
{ |
|
"name": "Animagine Light v3.1", |
|
"prompt": "(masterpiece), best quality, very aesthetic, perfect face", |
|
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn", |
|
}, |
|
{ |
|
"name": "Animagine Heavy v3.1", |
|
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details", |
|
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing", |
|
}, |
|
] |
|
|
|
|
|
style_list = [ |
|
{ |
|
"name": "None", |
|
"prompt": "", |
|
"negative_prompt": "", |
|
}, |
|
{ |
|
"name": "Cinematic", |
|
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", |
|
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "Photographic", |
|
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed", |
|
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly", |
|
}, |
|
{ |
|
"name": "Anime", |
|
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed", |
|
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast", |
|
}, |
|
{ |
|
"name": "Manga", |
|
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style", |
|
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style", |
|
}, |
|
{ |
|
"name": "Digital Art", |
|
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed", |
|
"negative_prompt": "photo, photorealistic, realism, ugly", |
|
}, |
|
{ |
|
"name": "Pixel art", |
|
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics", |
|
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic", |
|
}, |
|
{ |
|
"name": "Fantasy art", |
|
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", |
|
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white", |
|
}, |
|
{ |
|
"name": "Neonpunk", |
|
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional", |
|
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured", |
|
}, |
|
{ |
|
"name": "3D Model", |
|
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting", |
|
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting", |
|
}, |
|
] |
|
|
|
|
|
optimization_list = { |
|
"None": [28, 7., 'Euler a', False, 'None', 1.], |
|
"Default": [28, 7., 'Euler a', False, 'None', 1.], |
|
"SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.], |
|
"DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.], |
|
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.], |
|
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.], |
|
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.], |
|
"Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.], |
|
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.], |
|
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.], |
|
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.], |
|
"PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.], |
|
"PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.], |
|
"PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.], |
|
"PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.], |
|
} |
|
|
|
|
|
def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui): |
|
if not opt in list(optimization_list.keys()): opt = "None" |
|
def_steps_gui = 28 |
|
def_cfg_gui = 7. |
|
steps = optimization_list.get(opt, "None")[0] |
|
cfg = optimization_list.get(opt, "None")[1] |
|
sampler = optimization_list.get(opt, "None")[2] |
|
clip_skip = optimization_list.get(opt, "None")[3] |
|
lora = optimization_list.get(opt, "None")[4] |
|
lora_scale = optimization_list.get(opt, "None")[5] |
|
if opt == "None": |
|
steps = max(steps_gui, def_steps_gui) |
|
cfg = max(cfg_gui, def_cfg_gui) |
|
clip_skip = clip_skip_gui |
|
elif opt == "SPO" or opt == "DPO": |
|
steps = max(steps_gui, def_steps_gui) |
|
cfg = max(cfg_gui, def_cfg_gui) |
|
|
|
return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\ |
|
gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale), |
|
|
|
|
|
|
|
preset_sampler_setting = { |
|
"None": ["Euler a", 28, 7., True, 1024, 1024, "None"], |
|
"Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"], |
|
"Anime 3:4 Standard": ["Euler a", 28, 7., True, 896, 1152, "None"], |
|
"Anime 3:4 Heavy": ["Euler a", 40, 7., True, 896, 1152, "None"], |
|
"Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"], |
|
"Anime 1:1 Standard": ["Euler a", 28, 7., True, 1024, 1024, "None"], |
|
"Anime 1:1 Heavy": ["Euler a", 40, 7., True, 1024, 1024, "None"], |
|
"Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"], |
|
"Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"], |
|
"Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"], |
|
"Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"], |
|
"Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"], |
|
"Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"], |
|
} |
|
|
|
|
|
def set_sampler_settings(sampler_setting): |
|
if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None": |
|
return gr.update(value="Euler a"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\ |
|
gr.update(value=1024), gr.update(value=1024), gr.update(value="None") |
|
v = preset_sampler_setting.get(sampler_setting, ["Euler a", 28, 7., True, 1024, 1024]) |
|
|
|
return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\ |
|
gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6]) |
|
|
|
|
|
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list} |
|
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list} |
|
|
|
|
|
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"): |
|
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres") |
|
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]") |
|
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres") |
|
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends") |
|
prompts = to_list(prompt) |
|
neg_prompts = to_list(neg_prompt) |
|
|
|
all_styles_ps = [] |
|
all_styles_nps = [] |
|
for d in style_list: |
|
all_styles_ps.extend(to_list(str(d.get("prompt", "")))) |
|
all_styles_nps.extend(to_list(str(d.get("negative_prompt", "")))) |
|
|
|
all_quality_ps = [] |
|
all_quality_nps = [] |
|
for d in quality_prompt_list: |
|
all_quality_ps.extend(to_list(str(d.get("prompt", "")))) |
|
all_quality_nps.extend(to_list(str(d.get("negative_prompt", "")))) |
|
|
|
quality_ps = to_list(preset_quality[quality_key][0]) |
|
quality_nps = to_list(preset_quality[quality_key][1]) |
|
styles_ps = to_list(preset_styles[styles_key][0]) |
|
styles_nps = to_list(preset_styles[styles_key][1]) |
|
|
|
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps) |
|
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps) |
|
|
|
last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] |
|
last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else [] |
|
|
|
if type == "Animagine": |
|
prompts = prompts + animagine_ps |
|
neg_prompts = neg_prompts + animagine_nps |
|
elif type == "Pony": |
|
prompts = prompts + pony_ps |
|
neg_prompts = neg_prompts + pony_nps |
|
|
|
prompts = prompts + styles_ps + quality_ps |
|
neg_prompts = neg_prompts + styles_nps + quality_nps |
|
|
|
prompt = ", ".join(list_uniq(prompts) + last_empty_p) |
|
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np) |
|
|
|
return gr.update(value=prompt), gr.update(value=neg_prompt), gr.update(value=type) |
|
|
|
|
|
def set_quick_presets(genre:str = "None", type:str = "Auto", speed:str = "None", aspect:str = "None"): |
|
quality = "None" |
|
style = "None" |
|
sampler = "None" |
|
opt = "None" |
|
|
|
if genre == "Anime": |
|
if type != "None" and type != "Auto": style = "Anime" |
|
if aspect == "1:1": |
|
if speed == "Heavy": |
|
sampler = "Anime 1:1 Heavy" |
|
elif speed == "Fast": |
|
sampler = "Anime 1:1 Fast" |
|
else: |
|
sampler = "Anime 1:1 Standard" |
|
elif aspect == "3:4": |
|
if speed == "Heavy": |
|
sampler = "Anime 3:4 Heavy" |
|
elif speed == "Fast": |
|
sampler = "Anime 3:4 Fast" |
|
else: |
|
sampler = "Anime 3:4 Standard" |
|
if type == "Pony": |
|
quality = "Pony Anime Common" |
|
elif type == "Animagine": |
|
quality = "Animagine Common" |
|
else: |
|
quality = "None" |
|
elif genre == "Photo": |
|
if type != "None" and type != "Auto": style = "Photographic" |
|
if aspect == "1:1": |
|
if speed == "Heavy": |
|
sampler = "Photo 1:1 Heavy" |
|
elif speed == "Fast": |
|
sampler = "Photo 1:1 Fast" |
|
else: |
|
sampler = "Photo 1:1 Standard" |
|
elif aspect == "3:4": |
|
if speed == "Heavy": |
|
sampler = "Photo 3:4 Heavy" |
|
elif speed == "Fast": |
|
sampler = "Photo 3:4 Fast" |
|
else: |
|
sampler = "Photo 3:4 Standard" |
|
if type == "Pony": |
|
quality = "Pony Common" |
|
else: |
|
quality = "None" |
|
|
|
if speed == "Fast": |
|
opt = "DPO Turbo" |
|
if genre == "Anime" and type != "Pony" and type != "Auto": quality = "Animagine Light v3.1" |
|
|
|
return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt), gr.update(value=type) |
|
|
|
|
|
textual_inversion_dict = {} |
|
try: |
|
with open('textual_inversion_dict.json', encoding='utf-8') as f: |
|
textual_inversion_dict = json.load(f) |
|
except Exception: |
|
pass |
|
textual_inversion_file_token_list = [] |
|
|
|
|
|
def get_tupled_embed_list(embed_list): |
|
global textual_inversion_file_list |
|
tupled_list = [] |
|
for file in embed_list: |
|
token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0] |
|
tupled_list.append((token, file)) |
|
textual_inversion_file_token_list.append(token) |
|
return tupled_list |
|
|
|
|
|
def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui): |
|
ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list |
|
tags = prompt_gui.split(",") if prompt_gui else [] |
|
prompts = [] |
|
for tag in tags: |
|
tag = str(tag).strip() |
|
if tag and not tag in ti_tags: |
|
prompts.append(tag) |
|
ntags = neg_prompt_gui.split(",") if neg_prompt_gui else [] |
|
neg_prompts = [] |
|
for tag in ntags: |
|
tag = str(tag).strip() |
|
if tag and not tag in ti_tags: |
|
neg_prompts.append(tag) |
|
ti_prompts = [] |
|
ti_neg_prompts = [] |
|
for ti in textual_inversion_gui: |
|
tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False]) |
|
is_positive = tokens[1] == True or "positive" in Path(ti).parent.name |
|
if is_positive: |
|
ti_prompts.append(tokens[0]) |
|
else: |
|
ti_neg_prompts.append(tokens[0]) |
|
empty = [""] |
|
prompt = ", ".join(prompts + ti_prompts + empty) |
|
neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty) |
|
return gr.update(value=prompt), gr.update(value=neg_prompt), |
|
|
|
|
|
def get_model_pipeline(repo_id: str): |
|
api = HfApi(token=HF_TOKEN) |
|
default = "StableDiffusionPipeline" |
|
try: |
|
if not is_repo_name(repo_id): return default |
|
model = api.model_info(repo_id=repo_id, timeout=5.0) |
|
except Exception: |
|
return default |
|
if model.private or model.gated: return default |
|
tags = model.tags |
|
if not 'diffusers' in tags: return default |
|
if 'diffusers:FluxPipeline' in tags: |
|
return "FluxPipeline" |
|
if 'diffusers:StableDiffusionXLPipeline' in tags: |
|
return "StableDiffusionXLPipeline" |
|
elif 'diffusers:StableDiffusionPipeline' in tags: |
|
return "StableDiffusionPipeline" |
|
else: |
|
return default |
|
|
|
|
|
EXAMPLES_GUI = [ |
|
[ |
|
"1girl, souryuu asuka langley, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors, masterpiece, best quality, very aesthetic, absurdres", |
|
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
1, |
|
30, |
|
7.5, |
|
True, |
|
-1, |
|
"Euler a", |
|
1152, |
|
896, |
|
"votepurchase/animagine-xl-3.1", |
|
], |
|
[ |
|
"solo, princess Zelda OOT, score_9, score_8_up, score_8, medium breasts, cute, eyelashes, cute small face, long hair, crown braid, hairclip, pointy ears, soft curvy body, looking at viewer, smile, blush, white dress, medium body, (((holding the Master Sword))), standing, deep forest in the background", |
|
"score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white,", |
|
1, |
|
30, |
|
5., |
|
True, |
|
-1, |
|
"Euler a", |
|
1024, |
|
1024, |
|
"votepurchase/ponyDiffusionV6XL", |
|
], |
|
[ |
|
"1girl, oomuro sakurako, yuru yuri, official art, school uniform, anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres", |
|
"photo, deformed, black and white, realism, disfigured, low contrast, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
1, |
|
40, |
|
7.0, |
|
True, |
|
-1, |
|
"Euler a", |
|
1024, |
|
1024, |
|
"Raelina/Rae-Diffusion-XL-V2", |
|
], |
|
[ |
|
"1girl, akaza akari, yuru yuri, official art, anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres", |
|
"photo, deformed, black and white, realism, disfigured, low contrast, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
1, |
|
35, |
|
7.0, |
|
True, |
|
-1, |
|
"Euler a", |
|
1024, |
|
1024, |
|
"Raelina/Raemu-XL-V4", |
|
], |
|
[ |
|
"yoshida yuuko, machikado mazoku, 1girl, solo, demon horns,horns, school uniform, long hair, open mouth, skirt, demon girl, ahoge, shiny, shiny hair, anime artwork", |
|
"nsfw, lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]", |
|
1, |
|
50, |
|
7., |
|
True, |
|
-1, |
|
"Euler a", |
|
1024, |
|
1024, |
|
"cagliostrolab/animagine-xl-3.1", |
|
], |
|
] |
|
|
|
|
|
RESOURCES = ( |
|
"""### Resources |
|
- You can also try the image generator in Colab’s free tier, which provides free GPU [link](https://github.com/R3gm/SD_diffusers_interactive). |
|
""" |
|
) |
|
|