Upload 2 files
Browse files
app.py
CHANGED
@@ -76,12 +76,16 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
76 |
with gr.Row():
|
77 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
78 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
79 |
|
80 |
with gr.Row():
|
81 |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
|
82 |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
|
83 |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
|
84 |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
|
|
|
|
|
|
|
85 |
|
86 |
with gr.Row():
|
87 |
with gr.Column(scale=4):
|
@@ -204,7 +208,8 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
204 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
205 |
guidance_scale, num_inference_steps, model_name,
|
206 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
207 |
-
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
|
|
|
208 |
outputs=[result],
|
209 |
queue=True,
|
210 |
show_progress="full",
|
@@ -217,7 +222,8 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
217 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
218 |
guidance_scale, num_inference_steps, model_name,
|
219 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
220 |
-
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
|
|
|
221 |
outputs=[result],
|
222 |
queue=False,
|
223 |
show_api=True,
|
@@ -240,7 +246,8 @@ with gr.Blocks(fill_width=True, elem_id="container", css=css, delete_cache=(60,
|
|
240 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
241 |
guidance_scale, num_inference_steps, model_name,
|
242 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
243 |
-
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
|
|
|
244 |
outputs=[result],
|
245 |
queue=True,
|
246 |
show_progress="full",
|
|
|
76 |
with gr.Row():
|
77 |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
78 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
79 |
+
gpu_duration = gr.Number(minimum=5, maximum=240, value=59, show_label=False, container=False, info="GPU time duration (seconds)")
|
80 |
|
81 |
with gr.Row():
|
82 |
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 832
|
83 |
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024) # 1216
|
84 |
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=30.0, step=0.1, value=7)
|
85 |
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=100, step=1, value=28)
|
86 |
+
pag_scale = gr.Slider(minimum=0.0, maximum=10.0, step=0.1, value=0.0, label="PAG Scale")
|
87 |
+
clip_skip = gr.Checkbox(value=True, label="Layer 2 Clip Skip")
|
88 |
+
free_u = gr.Checkbox(value=False, label="FreeU")
|
89 |
|
90 |
with gr.Row():
|
91 |
with gr.Column(scale=4):
|
|
|
208 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
209 |
guidance_scale, num_inference_steps, model_name,
|
210 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
211 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
|
212 |
+
clip_skip, pag_scale, free_u, gpu_duration, recom_prompt],
|
213 |
outputs=[result],
|
214 |
queue=True,
|
215 |
show_progress="full",
|
|
|
222 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
223 |
guidance_scale, num_inference_steps, model_name,
|
224 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
225 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
|
226 |
+
clip_skip, pag_scale, free_u, gpu_duration, recom_prompt],
|
227 |
outputs=[result],
|
228 |
queue=False,
|
229 |
show_api=True,
|
|
|
246 |
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height,
|
247 |
guidance_scale, num_inference_steps, model_name,
|
248 |
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt,
|
249 |
+
sampler, vae_model, auto_trans, schedule_type, schedule_prediction_type,
|
250 |
+
clip_skip, pag_scale, free_u, gpu_duration, recom_prompt],
|
251 |
outputs=[result],
|
252 |
queue=True,
|
253 |
show_progress="full",
|
dc.py
CHANGED
@@ -139,7 +139,7 @@ class GuiSD:
|
|
139 |
self.last_load = datetime.now()
|
140 |
self.inventory = []
|
141 |
|
142 |
-
def update_storage_models(self, storage_floor_gb=
|
143 |
while get_used_storage_gb() > storage_floor_gb:
|
144 |
if len(self.inventory) < required_inventory_for_purge:
|
145 |
break
|
@@ -726,23 +726,21 @@ from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_pat
|
|
726 |
|
727 |
#@spaces.GPU
|
728 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
MAX_SEED = np.iinfo(np.int32).max
|
734 |
|
735 |
image_previews = True
|
736 |
load_lora_cpu = False
|
737 |
verbose_info = False
|
738 |
-
gpu_duration = 59
|
739 |
filename_pattern = "model,seed"
|
740 |
|
741 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
742 |
progress(0, desc="Preparing...")
|
743 |
|
744 |
-
if randomize_seed:
|
745 |
-
seed = random.randint(0, MAX_SEED)
|
746 |
|
747 |
generator = torch.Generator().manual_seed(seed).seed()
|
748 |
|
@@ -767,15 +765,15 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
767 |
progress(1, desc="Model loaded.")
|
768 |
progress(0, desc="Starting Inference...")
|
769 |
for info_state, stream_images, info_images in sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
|
770 |
-
guidance_scale,
|
771 |
lora4, lora4_wt, lora5, lora5_wt, sampler, schedule_type, schedule_prediction_type,
|
772 |
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
|
773 |
None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
|
774 |
1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
|
775 |
False, True, 1, True, False, image_previews, False, False, filename_pattern, "./images", False, False, False, True, 1, 0.55,
|
776 |
-
False,
|
777 |
False, "", "", 0.35, True, True, False, 4, 4, 32,
|
778 |
-
True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7,
|
779 |
load_lora_cpu, verbose_info, gpu_duration
|
780 |
):
|
781 |
images = stream_images if isinstance(stream_images, list) else images
|
@@ -787,10 +785,10 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
787 |
|
788 |
#@spaces.GPU
|
789 |
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
return gr.update()
|
795 |
|
796 |
|
|
|
139 |
self.last_load = datetime.now()
|
140 |
self.inventory = []
|
141 |
|
142 |
+
def update_storage_models(self, storage_floor_gb=32, required_inventory_for_purge=3):
|
143 |
while get_used_storage_gb() > storage_floor_gb:
|
144 |
if len(self.inventory) < required_inventory_for_purge:
|
145 |
break
|
|
|
726 |
|
727 |
#@spaces.GPU
|
728 |
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
729 |
+
model_name=load_diffusers_format_model[0], lora1=None, lora1_wt=1.0, lora2=None, lora2_wt=1.0,
|
730 |
+
lora3=None, lora3_wt=1.0, lora4=None, lora4_wt=1.0, lora5=None, lora5_wt=1.0,
|
731 |
+
sampler="Euler", vae=None, translate=False, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
|
732 |
+
clip_skip=True, pag_scale=0.0, free_u=False, gpu_duration=59, recom_prompt=True, progress=gr.Progress(track_tqdm=True)):
|
733 |
MAX_SEED = np.iinfo(np.int32).max
|
734 |
|
735 |
image_previews = True
|
736 |
load_lora_cpu = False
|
737 |
verbose_info = False
|
|
|
738 |
filename_pattern = "model,seed"
|
739 |
|
740 |
images: list[tuple[PIL.Image.Image, str | None]] = []
|
741 |
progress(0, desc="Preparing...")
|
742 |
|
743 |
+
if randomize_seed: seed = random.randint(0, MAX_SEED)
|
|
|
744 |
|
745 |
generator = torch.Generator().manual_seed(seed).seed()
|
746 |
|
|
|
765 |
progress(1, desc="Model loaded.")
|
766 |
progress(0, desc="Starting Inference...")
|
767 |
for info_state, stream_images, info_images in sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
|
768 |
+
guidance_scale, clip_skip, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
|
769 |
lora4, lora4_wt, lora5, lora5_wt, sampler, schedule_type, schedule_prediction_type,
|
770 |
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
|
771 |
None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
|
772 |
1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
|
773 |
False, True, 1, True, False, image_previews, False, False, filename_pattern, "./images", False, False, False, True, 1, 0.55,
|
774 |
+
False, free_u, False, True, False, "Use same sampler", False, "", "", 0.35, True, True, False, 4, 4, 32,
|
775 |
False, "", "", 0.35, True, True, False, 4, 4, 32,
|
776 |
+
True, None, None, "plus_face", "original", 0.7, None, None, "base", "style", 0.7, pag_scale,
|
777 |
load_lora_cpu, verbose_info, gpu_duration
|
778 |
):
|
779 |
images = stream_images if isinstance(stream_images, list) else images
|
|
|
785 |
|
786 |
#@spaces.GPU
|
787 |
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
|
788 |
+
model_name=load_diffusers_format_model[0], lora1=None, lora1_wt=1.0, lora2=None, lora2_wt=1.0,
|
789 |
+
lora3=None, lora3_wt=1.0, lora4=None, lora4_wt=1.0, lora5=None, lora5_wt=1.0,
|
790 |
+
sampler="Euler", vae=None, translate=False, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
|
791 |
+
clip_skip=True, pag_scale=0.0, free_u=False, gpu_duration=59, recom_prompt=True, progress=gr.Progress(track_tqdm=True)):
|
792 |
return gr.update()
|
793 |
|
794 |
|