Upload 6 files
Browse files- dc.py +135 -137
- env.py +1 -1
- modutils.py +12 -8
dc.py
CHANGED
@@ -1,12 +1,11 @@
|
|
1 |
import spaces
|
2 |
import os
|
3 |
from stablepy import Model_Diffusers
|
4 |
-
from stablepy.diffusers_vanilla.model import scheduler_names
|
5 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
|
|
6 |
import torch
|
7 |
import re
|
8 |
-
import
|
9 |
-
import random
|
10 |
from stablepy import (
|
11 |
CONTROLNET_MODEL_IDS,
|
12 |
VALID_TASKS,
|
@@ -22,7 +21,7 @@ from stablepy import (
|
|
22 |
SD15_TASKS,
|
23 |
SDXL_TASKS,
|
24 |
)
|
25 |
-
import urllib.parse
|
26 |
import gradio as gr
|
27 |
from PIL import Image
|
28 |
import IPython.display
|
@@ -40,7 +39,7 @@ from stablepy import logger
|
|
40 |
logger.setLevel(logging.CRITICAL)
|
41 |
|
42 |
from env import (
|
43 |
-
|
44 |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
45 |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
46 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
@@ -49,7 +48,7 @@ from env import (
|
|
49 |
load_diffusers_format_model, download_model_list, download_lora_list,
|
50 |
download_vae_list, download_embeds)
|
51 |
|
52 |
-
|
53 |
"openpose": [
|
54 |
"Openpose",
|
55 |
"None",
|
@@ -121,7 +120,7 @@ preprocessor_controlnet = {
|
|
121 |
],
|
122 |
}
|
123 |
|
124 |
-
|
125 |
'txt2img': 'txt2img',
|
126 |
'img2img': 'img2img',
|
127 |
'inpaint': 'inpaint',
|
@@ -147,7 +146,35 @@ task_stablepy = {
|
|
147 |
'tile ControlNet': 'tile',
|
148 |
}
|
149 |
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
153 |
url = url.strip()
|
@@ -178,21 +205,19 @@ def download_things(directory, url, hf_token="", civitai_api_key=""):
|
|
178 |
else:
|
179 |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
180 |
|
181 |
-
|
182 |
def get_model_list(directory_path):
|
183 |
model_list = []
|
184 |
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
185 |
|
186 |
for filename in os.listdir(directory_path):
|
187 |
if os.path.splitext(filename)[1] in valid_extensions:
|
188 |
-
name_without_extension = os.path.splitext(filename)[0]
|
189 |
file_path = os.path.join(directory_path, filename)
|
190 |
# model_list.append((name_without_extension, file_path))
|
191 |
model_list.append(file_path)
|
192 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
193 |
return model_list
|
194 |
|
195 |
-
|
196 |
## BEGIN MOD
|
197 |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
|
198 |
get_tupled_model_list, get_lora_model_list, download_private_repo)
|
@@ -210,24 +235,21 @@ download_private_repo(HF_VAE_PRIVATE_REPO, directory_vaes, False)
|
|
210 |
load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
|
211 |
## END MOD
|
212 |
|
213 |
-
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
214 |
-
hf_token = os.environ.get("HF_TOKEN")
|
215 |
-
|
216 |
# Download stuffs
|
217 |
for url in [url.strip() for url in download_model.split(',')]:
|
218 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
219 |
-
download_things(directory_models, url,
|
220 |
for url in [url.strip() for url in download_vae.split(',')]:
|
221 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
222 |
-
download_things(directory_vaes, url,
|
223 |
for url in [url.strip() for url in download_lora.split(',')]:
|
224 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
225 |
-
download_things(directory_loras, url,
|
226 |
|
227 |
# Download Embeddings
|
228 |
for url_embed in download_embeds:
|
229 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
230 |
-
download_things(directory_embeds, url_embed,
|
231 |
|
232 |
# Build list models
|
233 |
embed_list = get_model_list(directory_embeds)
|
@@ -244,53 +266,45 @@ embed_sdxl_list = get_model_list(directory_embeds_sdxl) + get_model_list(directo
|
|
244 |
|
245 |
def get_embed_list(pipeline_name):
|
246 |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
247 |
-
|
248 |
-
|
249 |
## END MOD
|
250 |
|
251 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
252 |
|
253 |
-
|
254 |
-
|
255 |
-
"
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
"
|
264 |
-
"
|
265 |
-
"
|
266 |
-
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
267 |
-
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
268 |
-
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
269 |
-
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
270 |
-
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
271 |
-
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
272 |
-
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
273 |
-
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
274 |
-
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
275 |
-
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
276 |
-
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
277 |
}
|
278 |
|
279 |
-
|
|
|
|
|
|
|
|
|
280 |
|
|
|
281 |
|
282 |
def extract_parameters(input_string):
|
283 |
parameters = {}
|
284 |
input_string = input_string.replace("\n", "")
|
285 |
|
286 |
-
if
|
287 |
print("Negative prompt not detected")
|
288 |
parameters["prompt"] = input_string
|
289 |
return parameters
|
290 |
|
291 |
parm = input_string.split("Negative prompt:")
|
292 |
parameters["prompt"] = parm[0]
|
293 |
-
if
|
294 |
print("Steps not detected")
|
295 |
parameters["neg_prompt"] = parm[1]
|
296 |
return parameters
|
@@ -318,6 +332,17 @@ def extract_parameters(input_string):
|
|
318 |
|
319 |
return parameters
|
320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
|
322 |
## BEGIN MOD
|
323 |
class GuiSD:
|
@@ -348,29 +373,27 @@ class GuiSD:
|
|
348 |
|
349 |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
350 |
|
351 |
-
yield f"Loading model: {model_name}"
|
352 |
|
353 |
vae_model = vae_model if vae_model != "None" else None
|
|
|
354 |
|
355 |
-
if
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
360 |
-
|
361 |
-
if incompatible_vae:
|
362 |
-
vae_model = None
|
363 |
|
364 |
self.model.device = torch.device("cpu")
|
|
|
365 |
|
366 |
self.model.load_pipe(
|
367 |
model_name,
|
368 |
-
task_name=
|
369 |
vae_model=vae_model if vae_model != "None" else None,
|
370 |
-
type_model_precision=
|
371 |
retain_task_model_in_cache=False,
|
372 |
)
|
373 |
-
yield f"Model loaded: {model_name}"
|
374 |
|
375 |
@spaces.GPU
|
376 |
@torch.inference_mode()
|
@@ -487,38 +510,15 @@ class GuiSD:
|
|
487 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
488 |
msg_lora = []
|
489 |
|
|
|
|
|
490 |
## BEGIN MOD
|
491 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
492 |
global lora_model_list
|
493 |
lora_model_list = get_lora_model_list()
|
494 |
## END MOD
|
495 |
|
496 |
-
|
497 |
-
model_is_xl = "xl" in model_name.lower()
|
498 |
-
sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
|
499 |
-
model_type = "SDXL" if model_is_xl else "SD 1.5"
|
500 |
-
incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
|
501 |
-
|
502 |
-
if incompatible_vae:
|
503 |
-
msg_inc_vae = (
|
504 |
-
f"The selected VAE is for a { 'SD 1.5' if model_is_xl else 'SDXL' } model, but you"
|
505 |
-
f" are using a { model_type } model. The default VAE "
|
506 |
-
"will be used."
|
507 |
-
)
|
508 |
-
gr.Info(msg_inc_vae)
|
509 |
-
vae_msg = msg_inc_vae
|
510 |
-
vae_model = None
|
511 |
-
|
512 |
-
for la in loras_list:
|
513 |
-
if la is not None and la != "None" and la != "" and la in lora_model_list:
|
514 |
-
print(la)
|
515 |
-
lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
|
516 |
-
if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
|
517 |
-
msg_inc_lora = f"The LoRA {la} is for { 'SD 1.5' if model_is_xl else 'SDXL' }, but you are using { model_type }."
|
518 |
-
gr.Info(msg_inc_lora)
|
519 |
-
msg_lora.append(msg_inc_lora)
|
520 |
-
|
521 |
-
task = task_stablepy[task]
|
522 |
|
523 |
params_ip_img = []
|
524 |
params_ip_msk = []
|
@@ -540,82 +540,53 @@ class GuiSD:
|
|
540 |
params_ip_mode.append(modeip)
|
541 |
params_ip_scale.append(scaleip)
|
542 |
|
543 |
-
model_precision = torch.float16 if "flux" not in model_name.lower() else torch.bfloat16
|
544 |
-
|
545 |
-
# First load
|
546 |
-
model_precision = torch.float16
|
547 |
-
if not self.model:
|
548 |
-
print("Loading model...")
|
549 |
-
self.model = Model_Diffusers(
|
550 |
-
base_model_id=model_name,
|
551 |
-
task_name=task,
|
552 |
-
vae_model=vae_model if vae_model != "None" else None,
|
553 |
-
type_model_precision=model_precision,
|
554 |
-
retain_task_model_in_cache=retain_task_cache_gui,
|
555 |
-
)
|
556 |
-
|
557 |
if task != "txt2img" and not image_control:
|
558 |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
559 |
|
560 |
if task == "inpaint" and not image_mask:
|
561 |
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
562 |
|
563 |
-
if upscaler_model_path in
|
564 |
upscaler_model = upscaler_model_path
|
565 |
else:
|
566 |
directory_upscalers = 'upscalers'
|
567 |
os.makedirs(directory_upscalers, exist_ok=True)
|
568 |
|
569 |
-
url_upscaler =
|
570 |
|
571 |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
572 |
-
download_things(directory_upscalers, url_upscaler,
|
573 |
|
574 |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
575 |
|
576 |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
577 |
|
578 |
-
print("Config model:", model_name, vae_model, loras_list)
|
579 |
-
|
580 |
-
self.model.load_pipe(
|
581 |
-
model_name,
|
582 |
-
task_name=task,
|
583 |
-
vae_model=vae_model if vae_model != "None" else None,
|
584 |
-
type_model_precision=model_precision,
|
585 |
-
retain_task_model_in_cache=retain_task_cache_gui,
|
586 |
-
)
|
587 |
-
|
588 |
-
## BEGIN MOD
|
589 |
-
# if textual_inversion and self.model.class_name == "StableDiffusionXLPipeline":
|
590 |
-
# print("No Textual inversion for SDXL")
|
591 |
-
## END MOD
|
592 |
-
|
593 |
adetailer_params_A = {
|
594 |
-
"face_detector_ad"
|
595 |
-
"person_detector_ad"
|
596 |
-
"hand_detector_ad"
|
597 |
"prompt": prompt_ad_a,
|
598 |
-
"negative_prompt"
|
599 |
-
"strength"
|
600 |
# "image_list_task" : None,
|
601 |
-
"mask_dilation"
|
602 |
-
"mask_blur"
|
603 |
-
"mask_padding"
|
604 |
-
"inpaint_only"
|
605 |
-
"sampler"
|
606 |
}
|
607 |
|
608 |
adetailer_params_B = {
|
609 |
-
"face_detector_ad"
|
610 |
-
"person_detector_ad"
|
611 |
-
"hand_detector_ad"
|
612 |
"prompt": prompt_ad_b,
|
613 |
-
"negative_prompt"
|
614 |
-
"strength"
|
615 |
# "image_list_task" : None,
|
616 |
-
"mask_dilation"
|
617 |
-
"mask_blur"
|
618 |
-
"mask_padding"
|
619 |
}
|
620 |
pipe_params = {
|
621 |
"prompt": prompt,
|
@@ -708,8 +679,35 @@ class GuiSD:
|
|
708 |
return self.infer_short(self.model, pipe_params, progress), info_state
|
709 |
## END MOD
|
710 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
|
712 |
from pathlib import Path
|
|
|
713 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
714 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
715 |
get_valid_lora_path, get_valid_lora_wt, get_lora_info,
|
@@ -749,11 +747,11 @@ def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance
|
|
749 |
lora5 = get_valid_lora_path(lora5)
|
750 |
progress(1, desc="Preparation completed. Starting inference preparation...")
|
751 |
|
752 |
-
sd_gen.load_new_model(model_name, vae,
|
753 |
images, info = sd_gen.generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
|
754 |
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
|
755 |
lora4, lora4_wt, lora5, lora5_wt, sampler,
|
756 |
-
height, width, model_name, vae,
|
757 |
None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
|
758 |
1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
|
759 |
False, True, 1, True, False, False, False, False, "./images", False, False, False, True, 1, 0.55,
|
|
|
1 |
import spaces
|
2 |
import os
|
3 |
from stablepy import Model_Diffusers
|
|
|
4 |
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
|
5 |
+
from stablepy.diffusers_vanilla.constants import FLUX_CN_UNION_MODES
|
6 |
import torch
|
7 |
import re
|
8 |
+
from huggingface_hub import HfApi
|
|
|
9 |
from stablepy import (
|
10 |
CONTROLNET_MODEL_IDS,
|
11 |
VALID_TASKS,
|
|
|
21 |
SD15_TASKS,
|
22 |
SDXL_TASKS,
|
23 |
)
|
24 |
+
#import urllib.parse
|
25 |
import gradio as gr
|
26 |
from PIL import Image
|
27 |
import IPython.display
|
|
|
39 |
logger.setLevel(logging.CRITICAL)
|
40 |
|
41 |
from env import (
|
42 |
+
HF_TOKEN, hf_read_token, # to use only for private repos
|
43 |
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
44 |
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
|
45 |
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
|
|
|
48 |
load_diffusers_format_model, download_model_list, download_lora_list,
|
49 |
download_vae_list, download_embeds)
|
50 |
|
51 |
+
PREPROCESSOR_CONTROLNET = {
|
52 |
"openpose": [
|
53 |
"Openpose",
|
54 |
"None",
|
|
|
120 |
],
|
121 |
}
|
122 |
|
123 |
+
TASK_STABLEPY = {
|
124 |
'txt2img': 'txt2img',
|
125 |
'img2img': 'img2img',
|
126 |
'inpaint': 'inpaint',
|
|
|
146 |
'tile ControlNet': 'tile',
|
147 |
}
|
148 |
|
149 |
+
TASK_MODEL_LIST = list(TASK_STABLEPY.keys())
|
150 |
+
|
151 |
+
UPSCALER_DICT_GUI = {
|
152 |
+
None: None,
|
153 |
+
"Lanczos": "Lanczos",
|
154 |
+
"Nearest": "Nearest",
|
155 |
+
'Latent': 'Latent',
|
156 |
+
'Latent (antialiased)': 'Latent (antialiased)',
|
157 |
+
'Latent (bicubic)': 'Latent (bicubic)',
|
158 |
+
'Latent (bicubic antialiased)': 'Latent (bicubic antialiased)',
|
159 |
+
'Latent (nearest)': 'Latent (nearest)',
|
160 |
+
'Latent (nearest-exact)': 'Latent (nearest-exact)',
|
161 |
+
"RealESRGAN_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
|
162 |
+
"RealESRNet_x4plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
|
163 |
+
"RealESRGAN_x4plus_anime_6B": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
|
164 |
+
"RealESRGAN_x2plus": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
|
165 |
+
"realesr-animevideov3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
|
166 |
+
"realesr-general-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
|
167 |
+
"realesr-general-wdn-x4v3": "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
|
168 |
+
"4x-UltraSharp": "https://huggingface.co/Shandypur/ESRGAN-4x-UltraSharp/resolve/main/4x-UltraSharp.pth",
|
169 |
+
"4x_foolhardy_Remacri": "https://huggingface.co/FacehugmanIII/4x_foolhardy_Remacri/resolve/main/4x_foolhardy_Remacri.pth",
|
170 |
+
"Remacri4xExtraSmoother": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/Remacri%204x%20ExtraSmoother.pth",
|
171 |
+
"AnimeSharp4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/AnimeSharp%204x.pth",
|
172 |
+
"lollypop": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/lollypop.pth",
|
173 |
+
"RealisticRescaler4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/RealisticRescaler%204x.pth",
|
174 |
+
"NickelbackFS4x": "https://huggingface.co/hollowstrawberry/upscalers-backup/resolve/main/ESRGAN/NickelbackFS%204x.pth"
|
175 |
+
}
|
176 |
+
|
177 |
+
UPSCALER_KEYS = list(UPSCALER_DICT_GUI.keys())
|
178 |
|
179 |
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
180 |
url = url.strip()
|
|
|
205 |
else:
|
206 |
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
207 |
|
|
|
208 |
def get_model_list(directory_path):
|
209 |
model_list = []
|
210 |
valid_extensions = {'.ckpt', '.pt', '.pth', '.safetensors', '.bin'}
|
211 |
|
212 |
for filename in os.listdir(directory_path):
|
213 |
if os.path.splitext(filename)[1] in valid_extensions:
|
214 |
+
# name_without_extension = os.path.splitext(filename)[0]
|
215 |
file_path = os.path.join(directory_path, filename)
|
216 |
# model_list.append((name_without_extension, file_path))
|
217 |
model_list.append(file_path)
|
218 |
print('\033[34mFILE: ' + file_path + '\033[0m')
|
219 |
return model_list
|
220 |
|
|
|
221 |
## BEGIN MOD
|
222 |
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
|
223 |
get_tupled_model_list, get_lora_model_list, download_private_repo)
|
|
|
235 |
load_diffusers_format_model = list_uniq(load_diffusers_format_model + get_model_id_list())
|
236 |
## END MOD
|
237 |
|
|
|
|
|
|
|
238 |
# Download stuffs
|
239 |
for url in [url.strip() for url in download_model.split(',')]:
|
240 |
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
|
241 |
+
download_things(directory_models, url, HF_TOKEN, CIVITAI_API_KEY)
|
242 |
for url in [url.strip() for url in download_vae.split(',')]:
|
243 |
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
|
244 |
+
download_things(directory_vaes, url, HF_TOKEN, CIVITAI_API_KEY)
|
245 |
for url in [url.strip() for url in download_lora.split(',')]:
|
246 |
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
|
247 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
248 |
|
249 |
# Download Embeddings
|
250 |
for url_embed in download_embeds:
|
251 |
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
|
252 |
+
download_things(directory_embeds, url_embed, HF_TOKEN, CIVITAI_API_KEY)
|
253 |
|
254 |
# Build list models
|
255 |
embed_list = get_model_list(directory_embeds)
|
|
|
266 |
|
267 |
def get_embed_list(pipeline_name):
|
268 |
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
|
|
|
|
|
269 |
## END MOD
|
270 |
|
271 |
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
|
272 |
|
273 |
+
msg_inc_vae = (
|
274 |
+
"Use the right VAE for your model to maintain image quality. The wrong"
|
275 |
+
" VAE can lead to poor results, like blurriness in the generated images."
|
276 |
+
)
|
277 |
+
|
278 |
+
SDXL_TASK = [k for k, v in TASK_STABLEPY.items() if v in SDXL_TASKS]
|
279 |
+
SD_TASK = [k for k, v in TASK_STABLEPY.items() if v in SD15_TASKS]
|
280 |
+
FLUX_TASK = list(TASK_STABLEPY.keys())[:3] + [k for k, v in TASK_STABLEPY.items() if v in FLUX_CN_UNION_MODES.keys()]
|
281 |
+
|
282 |
+
MODEL_TYPE_TASK = {
|
283 |
+
"SD 1.5": SD_TASK,
|
284 |
+
"SDXL": SDXL_TASK,
|
285 |
+
"FLUX": FLUX_TASK,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
}
|
287 |
|
288 |
+
MODEL_TYPE_CLASS = {
|
289 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
290 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
291 |
+
"diffusers:FluxPipeline": "FLUX",
|
292 |
+
}
|
293 |
|
294 |
+
POST_PROCESSING_SAMPLER = ["Use same sampler"] + scheduler_names[:-2]
|
295 |
|
296 |
def extract_parameters(input_string):
|
297 |
parameters = {}
|
298 |
input_string = input_string.replace("\n", "")
|
299 |
|
300 |
+
if "Negative prompt:" not in input_string:
|
301 |
print("Negative prompt not detected")
|
302 |
parameters["prompt"] = input_string
|
303 |
return parameters
|
304 |
|
305 |
parm = input_string.split("Negative prompt:")
|
306 |
parameters["prompt"] = parm[0]
|
307 |
+
if "Steps:" not in parm[1]:
|
308 |
print("Steps not detected")
|
309 |
parameters["neg_prompt"] = parm[1]
|
310 |
return parameters
|
|
|
332 |
|
333 |
return parameters
|
334 |
|
335 |
+
def get_model_type(repo_id: str):
|
336 |
+
api = HfApi(token=os.environ.get("HF_TOKEN")) # if use private or gated model
|
337 |
+
default = "SD 1.5"
|
338 |
+
try:
|
339 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
340 |
+
tags = model.tags
|
341 |
+
for tag in tags:
|
342 |
+
if tag in MODEL_TYPE_CLASS.keys(): return MODEL_TYPE_CLASS.get(tag, default)
|
343 |
+
except Exception:
|
344 |
+
return default
|
345 |
+
return default
|
346 |
|
347 |
## BEGIN MOD
|
348 |
class GuiSD:
|
|
|
373 |
|
374 |
def load_new_model(self, model_name, vae_model, task, progress=gr.Progress(track_tqdm=True)):
|
375 |
|
376 |
+
#yield f"Loading model: {model_name}"
|
377 |
|
378 |
vae_model = vae_model if vae_model != "None" else None
|
379 |
+
model_type = get_model_type(model_name)
|
380 |
|
381 |
+
if vae_model:
|
382 |
+
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
|
383 |
+
if model_type != vae_type:
|
384 |
+
gr.Info(msg_inc_vae)
|
|
|
|
|
|
|
|
|
385 |
|
386 |
self.model.device = torch.device("cpu")
|
387 |
+
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
|
388 |
|
389 |
self.model.load_pipe(
|
390 |
model_name,
|
391 |
+
task_name=TASK_STABLEPY[task],
|
392 |
vae_model=vae_model if vae_model != "None" else None,
|
393 |
+
type_model_precision=dtype_model,
|
394 |
retain_task_model_in_cache=False,
|
395 |
)
|
396 |
+
#yield f"Model loaded: {model_name}"
|
397 |
|
398 |
@spaces.GPU
|
399 |
@torch.inference_mode()
|
|
|
510 |
vae_msg = f"VAE: {vae_model}" if vae_model else ""
|
511 |
msg_lora = []
|
512 |
|
513 |
+
print("Config model:", model_name, vae_model, loras_list)
|
514 |
+
|
515 |
## BEGIN MOD
|
516 |
prompt, neg_prompt = insert_model_recom_prompt(prompt, neg_prompt, model_name)
|
517 |
global lora_model_list
|
518 |
lora_model_list = get_lora_model_list()
|
519 |
## END MOD
|
520 |
|
521 |
+
task = TASK_STABLEPY[task]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
params_ip_img = []
|
524 |
params_ip_msk = []
|
|
|
540 |
params_ip_mode.append(modeip)
|
541 |
params_ip_scale.append(scaleip)
|
542 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
if task != "txt2img" and not image_control:
|
544 |
raise ValueError("No control image found: To use this function, you have to upload an image in 'Image ControlNet/Inpaint/Img2img'")
|
545 |
|
546 |
if task == "inpaint" and not image_mask:
|
547 |
raise ValueError("No mask image found: Specify one in 'Image Mask'")
|
548 |
|
549 |
+
if upscaler_model_path in UPSCALER_KEYS[:9]:
|
550 |
upscaler_model = upscaler_model_path
|
551 |
else:
|
552 |
directory_upscalers = 'upscalers'
|
553 |
os.makedirs(directory_upscalers, exist_ok=True)
|
554 |
|
555 |
+
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]
|
556 |
|
557 |
if not os.path.exists(f"./upscalers/{url_upscaler.split('/')[-1]}"):
|
558 |
+
download_things(directory_upscalers, url_upscaler, HF_TOKEN)
|
559 |
|
560 |
upscaler_model = f"./upscalers/{url_upscaler.split('/')[-1]}"
|
561 |
|
562 |
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
|
563 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
564 |
adetailer_params_A = {
|
565 |
+
"face_detector_ad": face_detector_ad_a,
|
566 |
+
"person_detector_ad": person_detector_ad_a,
|
567 |
+
"hand_detector_ad": hand_detector_ad_a,
|
568 |
"prompt": prompt_ad_a,
|
569 |
+
"negative_prompt": negative_prompt_ad_a,
|
570 |
+
"strength": strength_ad_a,
|
571 |
# "image_list_task" : None,
|
572 |
+
"mask_dilation": mask_dilation_a,
|
573 |
+
"mask_blur": mask_blur_a,
|
574 |
+
"mask_padding": mask_padding_a,
|
575 |
+
"inpaint_only": adetailer_inpaint_only,
|
576 |
+
"sampler": adetailer_sampler,
|
577 |
}
|
578 |
|
579 |
adetailer_params_B = {
|
580 |
+
"face_detector_ad": face_detector_ad_b,
|
581 |
+
"person_detector_ad": person_detector_ad_b,
|
582 |
+
"hand_detector_ad": hand_detector_ad_b,
|
583 |
"prompt": prompt_ad_b,
|
584 |
+
"negative_prompt": negative_prompt_ad_b,
|
585 |
+
"strength": strength_ad_b,
|
586 |
# "image_list_task" : None,
|
587 |
+
"mask_dilation": mask_dilation_b,
|
588 |
+
"mask_blur": mask_blur_b,
|
589 |
+
"mask_padding": mask_padding_b,
|
590 |
}
|
591 |
pipe_params = {
|
592 |
"prompt": prompt,
|
|
|
679 |
return self.infer_short(self.model, pipe_params, progress), info_state
|
680 |
## END MOD
|
681 |
|
682 |
+
# def sd_gen_generate_pipeline(*args):
|
683 |
+
|
684 |
+
# # Load lora in CPU
|
685 |
+
# status_lora = sd_gen.model.lora_merge(
|
686 |
+
# lora_A=args[7] if args[7] != "None" else None, lora_scale_A=args[8],
|
687 |
+
# lora_B=args[9] if args[9] != "None" else None, lora_scale_B=args[10],
|
688 |
+
# lora_C=args[11] if args[11] != "None" else None, lora_scale_C=args[12],
|
689 |
+
# lora_D=args[13] if args[13] != "None" else None, lora_scale_D=args[14],
|
690 |
+
# lora_E=args[15] if args[15] != "None" else None, lora_scale_E=args[16],
|
691 |
+
# )
|
692 |
+
|
693 |
+
# lora_list = [args[7], args[9], args[11], args[13], args[15]]
|
694 |
+
# print(status_lora)
|
695 |
+
# for status, lora in zip(status_lora, lora_list):
|
696 |
+
# if status:
|
697 |
+
# gr.Info(f"LoRA loaded: {lora}")
|
698 |
+
# elif status is not None:
|
699 |
+
# gr.Warning(f"Failed to load LoRA: {lora}")
|
700 |
+
|
701 |
+
# # if status_lora == [None] * 5 and self.model.lora_memory != [None] * 5:
|
702 |
+
# # gr.Info(f"LoRAs in cache: {", ".join(str(x) for x in self.model.lora_memory if x is not None)}")
|
703 |
+
|
704 |
+
# yield from sd_gen.generate_pipeline(*args)
|
705 |
+
|
706 |
+
|
707 |
+
# sd_gen_generate_pipeline.zerogpu = True
|
708 |
|
709 |
from pathlib import Path
|
710 |
+
import random
|
711 |
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path,
|
712 |
get_local_model_list, get_private_lora_model_lists, get_valid_lora_name,
|
713 |
get_valid_lora_path, get_valid_lora_wt, get_lora_info,
|
|
|
747 |
lora5 = get_valid_lora_path(lora5)
|
748 |
progress(1, desc="Preparation completed. Starting inference preparation...")
|
749 |
|
750 |
+
sd_gen.load_new_model(model_name, vae, TASK_MODEL_LIST[0], progress)
|
751 |
images, info = sd_gen.generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
|
752 |
guidance_scale, True, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
|
753 |
lora4, lora4_wt, lora5, lora5_wt, sampler,
|
754 |
+
height, width, model_name, vae, TASK_MODEL_LIST[0], None, "Canny", 512, 1024,
|
755 |
None, None, None, 0.35, 100, 200, 0.1, 0.1, 1.0, 0., 1., False, "Classic", None,
|
756 |
1.0, 100, 10, 30, 0.55, "Use same sampler", "", "",
|
757 |
False, True, 1, True, False, False, False, False, "./images", False, False, False, True, 1, 0.55,
|
env.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
|
3 |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
4 |
-
|
5 |
hf_read_token = os.environ.get('HF_READ_TOKEN') # only use for private repo
|
6 |
|
7 |
# - **List Models**
|
|
|
1 |
import os
|
2 |
|
3 |
CIVITAI_API_KEY = os.environ.get("CIVITAI_API_KEY")
|
4 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
5 |
hf_read_token = os.environ.get('HF_READ_TOKEN') # only use for private repo
|
6 |
|
7 |
# - **List Models**
|
modutils.py
CHANGED
@@ -8,7 +8,7 @@ from pathlib import Path
|
|
8 |
|
9 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
10 |
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES,
|
11 |
-
directory_loras, hf_read_token,
|
12 |
|
13 |
|
14 |
def get_user_agent():
|
@@ -227,11 +227,16 @@ def get_model_id_list():
|
|
227 |
model_ids.append(model.id) if not model.private else ""
|
228 |
anime_models = []
|
229 |
real_models = []
|
|
|
|
|
230 |
for model in models_ex:
|
231 |
-
if not model.private and not model.gated
|
232 |
-
|
|
|
233 |
model_ids.extend(anime_models)
|
234 |
model_ids.extend(real_models)
|
|
|
|
|
235 |
model_id_list = model_ids.copy()
|
236 |
return model_ids
|
237 |
|
@@ -426,7 +431,7 @@ def download_lora(dl_urls: str):
|
|
426 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
427 |
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
428 |
if not Path(local_path).exists():
|
429 |
-
download_things(directory_loras, url,
|
430 |
urls.append(url)
|
431 |
after = get_local_model_list(directory_loras)
|
432 |
new_files = list_sub(after, before)
|
@@ -688,7 +693,7 @@ def get_my_lora(link_url):
|
|
688 |
before = get_local_model_list(directory_loras)
|
689 |
for url in [url.strip() for url in link_url.split(',')]:
|
690 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
691 |
-
download_things(directory_loras, url,
|
692 |
after = get_local_model_list(directory_loras)
|
693 |
new_files = list_sub(after, before)
|
694 |
for file in new_files:
|
@@ -745,8 +750,7 @@ def move_file_lora(filepaths):
|
|
745 |
|
746 |
|
747 |
def get_civitai_info(path):
|
748 |
-
global civitai_not_exists_list
|
749 |
-
global loras_url_to_path_dict
|
750 |
import requests
|
751 |
from requests.adapters import HTTPAdapter
|
752 |
from urllib3.util import Retry
|
@@ -1242,7 +1246,7 @@ def get_model_pipeline(repo_id: str):
|
|
1242 |
try:
|
1243 |
if " " in repo_id or not api.repo_exists(repo_id): return default
|
1244 |
model = api.model_info(repo_id=repo_id)
|
1245 |
-
except Exception
|
1246 |
return default
|
1247 |
if model.private or model.gated: return default
|
1248 |
tags = model.tags
|
|
|
8 |
|
9 |
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
10 |
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES,
|
11 |
+
directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY)
|
12 |
|
13 |
|
14 |
def get_user_agent():
|
|
|
227 |
model_ids.append(model.id) if not model.private else ""
|
228 |
anime_models = []
|
229 |
real_models = []
|
230 |
+
anime_models_flux = []
|
231 |
+
real_models_flux = []
|
232 |
for model in models_ex:
|
233 |
+
if not model.private and not model.gated:
|
234 |
+
if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id)
|
235 |
+
else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id)
|
236 |
model_ids.extend(anime_models)
|
237 |
model_ids.extend(real_models)
|
238 |
+
model_ids.extend(anime_models_flux)
|
239 |
+
model_ids.extend(real_models_flux)
|
240 |
model_id_list = model_ids.copy()
|
241 |
return model_ids
|
242 |
|
|
|
431 |
for url in [url.strip() for url in dl_urls.split(',')]:
|
432 |
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
433 |
if not Path(local_path).exists():
|
434 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
435 |
urls.append(url)
|
436 |
after = get_local_model_list(directory_loras)
|
437 |
new_files = list_sub(after, before)
|
|
|
693 |
before = get_local_model_list(directory_loras)
|
694 |
for url in [url.strip() for url in link_url.split(',')]:
|
695 |
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
696 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
697 |
after = get_local_model_list(directory_loras)
|
698 |
new_files = list_sub(after, before)
|
699 |
for file in new_files:
|
|
|
750 |
|
751 |
|
752 |
def get_civitai_info(path):
|
753 |
+
global civitai_not_exists_list, loras_url_to_path_dict
|
|
|
754 |
import requests
|
755 |
from requests.adapters import HTTPAdapter
|
756 |
from urllib3.util import Retry
|
|
|
1246 |
try:
|
1247 |
if " " in repo_id or not api.repo_exists(repo_id): return default
|
1248 |
model = api.model_info(repo_id=repo_id)
|
1249 |
+
except Exception:
|
1250 |
return default
|
1251 |
if model.private or model.gated: return default
|
1252 |
tags = model.tags
|