Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install --upgrade pip") | |
import re | |
import time | |
import io | |
from io import StringIO | |
from typing import Any, Dict, List | |
#Modules to Import | |
import openai | |
import streamlit as st | |
from langchain import LLMChain, OpenAI | |
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent | |
from langchain.chains import RetrievalQA | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.docstore.document import Document | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.llms import OpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import VectorStore | |
from langchain.vectorstores.faiss import FAISS | |
from pypdf import PdfReader | |
import os | |
from langchain.chat_models import ChatOpenAI | |
from langchain.prompts import ChatPromptTemplate | |
from langchain.chains import ConversationChain | |
from langchain.memory import ConversationBufferWindowMemory | |
from langchain.memory import ConversationSummaryBufferMemory | |
from langchain import OpenAI, LLMChain, PromptTemplate | |
from langchain.vectorstores import Chroma | |
from langchain.document_loaders import TextLoader, PyPDFLoader | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chains.summarize import load_summarize_chain | |
import tempfile | |
import warnings | |
warnings.filterwarnings('ignore') | |
from dotenv import load_dotenv, find_dotenv | |
_ = load_dotenv(find_dotenv()) | |
# openai.api_key = "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" | |
global openai_api_key | |
openai_api_key = api | |
os.environ['OPENAI_API_KEY'] = openai_api_key | |
def parse_pdf (file: io.BytesIO)-> List[str]: | |
pdf = PdfReader(file) | |
output = [] | |
for page in pdf.pages: | |
text = page.extract_text() | |
#Merge hyphenated words | |
text = re.sub(r"(\w+)-\n(\w+)", "\1\2", text) | |
# Fix newlines in the middle of sentences | |
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip()) | |
#Remove multiple newlines | |
text = re.sub(r"\n\s*\n", "\n\n", text) | |
output.append(text) | |
return output | |
def text_to_docs(text: str) -> List [Document]: | |
"""Converts a string or list of strings to a list of Documents with metadata,""" | |
if isinstance(text, str): | |
#Take a single string as one page | |
text = [text] | |
page_docs = [Document (page_content=page) for page in text] | |
# Add page numbers as metadata | |
for i, doc in enumerate(page_docs): | |
doc.metadata["page"] = 1 + 1 | |
# Split pages into chunks | |
doc_chunks = [] | |
for doc in page_docs: | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=2500, | |
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""], | |
chunk_overlap=0, | |
) | |
chunks = text_splitter.split_text(doc.page_content) | |
for i, chunk in enumerate(chunks): | |
doc = Document( | |
page_content=chunk, metadata={"page": doc.metadata["page"], "chunk": 1} | |
) | |
# Add sources a metadata | |
doc.metadata["source"] = f"{doc.metadata['page']}-{doc.metadata['chunk']}" | |
doc_chunks.append(doc) | |
return doc_chunks | |
def tool(index): | |
qa = RetrievalQA.from_chain_type( | |
llm = OpenAI(openai_api_key = api), | |
chain_type = "stuff", | |
retriever = index.as_retriever() | |
) | |
# our tool | |
tools = [ | |
Tool( | |
name="State of Union QA System", | |
func=qa.run, | |
description="Useful for when you need to answer questions about the aspects asked.\ | |
Input may be a partial or fully formed question,\ | |
it also can be about some things else, use the chat history to reply the questions" | |
) | |
] | |
return tools,qa | |
def process(kind, tools, qa): | |
if kind == "Sumarized": | |
prefix=""""Have a conversation with a human, answering the human questions as best you can based on the context and memory available. \ | |
You have access to a single tool:""" | |
suffix="""Begin!" | |
{chat_history} | |
Question: {input} | |
{agent_scratchpad}""" | |
elif kind == "Chat": | |
prefix=""""Have a conversation with a human, answering the human questions as best you can \ | |
You have access to a single tool:""" | |
suffix="""Begin!" | |
{chat_history} | |
the human just say: {input} | |
{agent_scratchpad}""" | |
prompt = ZeroShotAgent.create_prompt( | |
tools, | |
prefix=prefix, | |
suffix=suffix, | |
input_variables=["input", "chat_history", "agent_scratchpad"], | |
) | |
if "memory" not in st.session_state: | |
st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history") | |
#Chain | |
# ZeroShotAgent | |
llm_chain = LLMChain( | |
llm=OpenAI( | |
temperature=0, openai_api_key=api, model_name="gpt-3.5-turbo" | |
), | |
prompt=prompt, | |
) | |
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) | |
agent_chain = AgentExecutor.from_agent_and_tools( | |
agent=agent, tools=tools, verbose=True, memory=st.session_state.memory | |
) | |
return agent_chain,llm_chain | |
option = st.sidebar.selectbox( | |
'What do you want to ?', | |
('Sumarization','Chat')) | |
api = st.sidebar.text_input( | |
"Open api key", | |
type="password", | |
placeholder="sk-", | |
help="https://platform.openai.com/account/api-keys", | |
) | |
uploaded_file = st.sidebar.file_uploader(":blue[Upload]", type=["pdf"]) | |
global agent_chain,llm_chain | |
if api: | |
if option == "Sumarization": | |
if uploaded_file: | |
doc = parse_pdf(uploaded_file) | |
pages = text_to_docs(doc) | |
# pages | |
if pages: | |
with st.expander('Show page contents', expanded=False): | |
page_sel =st.number_input( | |
label="selected page", min_value=1, max_value=len(pages), step=1 | |
) | |
st.write(pages[page_sel-1]) | |
embeddings = OpenAIEmbeddings(openai_api_key = api) | |
# Indexing | |
# Save in a Vector DB_ | |
with st.spinner("It's indexing. .."): | |
index = FAISS.from_documents(pages, embeddings) | |
tools,qa = tool(index) | |
prefix=""""Have a conversation with a human, answering the human questions as best you can based on the context and memory available. \ | |
He may ask some not about the context but just answer the the question with a short sentence""" | |
suffix="""Begin!" | |
{chat_history} | |
Question: {input} | |
{agent_scratchpad}""" | |
prompt = ZeroShotAgent.create_prompt( | |
tools, | |
prefix=prefix, | |
suffix=suffix, | |
input_variables=["input", "chat_history", "agent_scratchpad"], | |
) | |
if "memory" not in st.session_state: | |
st.session_state.memory = ConversationBufferMemory(memory_key ="chat_history") | |
#Chain | |
# ZeroShotAgent | |
llm_chain = LLMChain( | |
llm=OpenAI( | |
temperature=0, openai_api_key=api, model_name="gpt-3.5-turbo" | |
), | |
prompt=prompt, | |
) | |
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True) | |
agent_chain = AgentExecutor.from_agent_and_tools( | |
agent=agent, tools=tools, verbose=True, memory=st.session_state.memory | |
) | |
# agent_chain,llm_chain = process("Sumarized",tools, qa) | |
container = st.container() | |
with container: | |
st.title("🤖 AI ChatBot") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
if query := st.chat_input("Hey yo !!! Wazzups!"): | |
st.chat_message("user").markdown(query) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": query}) | |
# response=llm_chain.memory.chat_memory.add_user_message(prompt) | |
if len(api) == 0: | |
response = f"""I will answer the question "{query}" if you give the API key""" | |
# st.write(response) | |
# #f"Echo: {prompt}" get_completion(template_string) # | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
else: | |
with st.spinner("It's indexing. .."): | |
response = agent_chain.run(query) | |
# st.write(response) | |
# #f"Echo: {prompt}" get_completion(template_string) # | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
# with st.expander("History/Memory"): | |
# st.write(st.session_state.memory) | |
elif option == "Chat": | |
def get_completion(prompt, model="gpt-3.5-turbo"): | |
messages = [{"role": "user", "content": prompt}] | |
response = openai.ChatCompletion.create( | |
model=model, | |
messages=messages, | |
temperature=0, | |
) | |
return response.choices[0].message["content"] | |
chat = ChatOpenAI(temperature=0.0, max_tokens=20) | |
memory = ConversationBufferWindowMemory(k=15) | |
conversation = ConversationChain( | |
llm=chat, | |
memory = memory, | |
verbose=False, | |
) | |
def reply(message, custom_style): | |
style = """ in a funny \ | |
and joke tone | |
""" | |
if len(custom_style) > 0: style = custom_style | |
template_string = f"""You are talking with a person \ | |
replying to the message\ | |
with a style that is {style}. \ | |
the person just say: {message}. | |
""" | |
prompt_template = ChatPromptTemplate.from_template(template_string) | |
bot_messages = prompt_template.format_messages( | |
style= style, | |
text= message) | |
response = conversation.predict(input=message) | |
return response | |
def sumarization(): | |
pass | |
def document_question(question): | |
pass | |
ask_about_doc = False | |
with st.sidebar: | |
st.subheader("How do you want your bot reply to your message ?") | |
custom_style = st.text_input("Tell me here", placeholder="joke tone") | |
container = st.container() | |
with container: | |
st.title("🤖 AI ChatBot") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# React to user input | |
if prompt := st.chat_input("What is up?"): | |
# Display user message in chat message container | |
st.chat_message("user").markdown(prompt) | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.spinner("It's indexing. .."): | |
response = reply(prompt,custom_style) | |
# with st.spinner("It's indexing. .."): | |
# tools,qa = tool() | |
# process("chat", tools, qa) | |
# response = agent_chain.run(query) | |
if memory not in st.session_state: | |
st.session_state.memory = ConversationBufferWindowMemory(k=15) | |
# response=llm_chain.memory.chat_memory.add_user_message(prompt) | |
# st.write(memory.buffer) | |
# #f"Echo: {prompt}" get_completion(template_string) # | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
st.markdown(response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) |