thesven's picture
basic setup
964cd90
raw
history blame
1.21 kB
import gradio as gr
import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
model_to_use = "thesven/Llama3-8B-SFT-code_bagel-bnb-4bit"
@spaces.GPU
def start(n):
model_name_or_path = "thesven/Llama3-8B-SFT-code_bagel-bnb-4bit"
# BitsAndBytesConfig for loading the model in 4-bit precision
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="bfloat16",
)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
device_map="auto",
trust_remote_code=True,
quantization_config=bnb_config
)
model.pad_token = model.config.eos_token_id
# Example response generation
input_text = "Hello, how are you?"
input_ids = tokenizer(input_text, return_tensors='pt').input_ids.cuda()
output = model.generate(inputs=input_ids, max_new_tokens=50)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
demo = gr.Interface(fn=start, inputs=gr.Number(), outputs=gr.Text())
demo.launch()