thisisdev commited on
Commit
253659d
·
verified ·
1 Parent(s): f7b5341
Files changed (1) hide show
  1. backend.py +56 -0
backend.py CHANGED
@@ -9,3 +9,59 @@ from langchain_google_genai import GoogleGenerativeAI
9
 
10
  os.environ["GOOGLE_API_KEY"] = "AIzaSyCYGj5e2eAQbUi9HtuMaW0LDSnDuxLG54U"
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  os.environ["GOOGLE_API_KEY"] = "AIzaSyCYGj5e2eAQbUi9HtuMaW0LDSnDuxLG54U"
11
 
12
+
13
+ class InvoicePipeline:
14
+
15
+ def __init__(self, paths):
16
+ self._paths = paths
17
+ self._llm = GoogleGenerativeAI(model="gemini-1.5-pro", google_api_key=api_key)
18
+ self._prompt_template = self._get_default_prompt_template()
19
+ # This funcition will help in extracting and run the code, and will produce a dataframe for us
20
+ def run(self) -> pd.DataFrame:
21
+ # We have defined the way the data has to be returned
22
+ df = pd.DataFrame(
23
+ "Invoice ID": pd.Series(dtype = "int"),
24
+ "DESCRIPTION": pd.Series(dtype = "str"),
25
+ "Issue Data": pd.Series(dtype = "str"),
26
+ "UNIT PRICE": pd.Series(dtype = "str"),
27
+ "AMOUNT": pd.Series(dtype = "int"),
28
+ "Bill For": pd.Series(dtype = "str"),
29
+ "From": pd.Series(dtype =" str"),
30
+ "Terms": pd.Series(dtype = "str")}
31
+ )
32
+
33
+ for path in self._paths:
34
+ raw_text = self._get_raw_text_from_pdf(path) # This function needs to be created
35
+ llm_resp = self._extract_data_from_llm(raw_text) #
36
+ data = self._parse_response(llm_resp)
37
+ df = pd.concat([df, pd.DataFrame([data])], ignore_index = True)
38
+
39
+ return df
40
+
41
+ # The default template that the machine will take
42
+ def _get_default_prompt_template(self) -> PromptTemplate:
43
+ template = """Extract all the following values: Invoice ID, DESCRIPTION, Issue Data,UNIT PRICE, AMOUNT, Bill for, From and Terms for: {pages}
44
+
45
+ Expected Outcome: remove any dollar symbols {{"Invoice ID":"12341234", "DESCRIPTION": "UNIT PRICE", "AMOUNT": "3", "Date": "2/1/2021", "AMOUNT": "100", "Bill For": "Dev", "From": "Coca Cola", "Terms" : "Net for 30 days"}}
46
+ """
47
+
48
+ prompt_template = PromptTemplate(input_variables = ["pages"], template = template)
49
+ return prompt_template
50
+
51
+
52
+ # We will try to extract the text from the PDF to a normal variable.
53
+ def _get_raw_text_from_pdf(self, path:str) -> str:
54
+ text = ""
55
+ pdf_reader = PdfReader(path)
56
+ for page in pdf_reader:
57
+ text += page.extract_text()
58
+ return text
59
+
60
+ def _extract_data_from_llm(self, raw_data:str) -> str:
61
+ resp = self._llm(self._prompt_template.format(pages = raw_data))
62
+ return resp
63
+
64
+
65
+
66
+
67
+