Spaces:
Sleeping
Sleeping
adjusted number of retrievals and llm inputs
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ import gradio as gr
|
|
4 |
from ragatouille import RAGPretrainedModel
|
5 |
from huggingface_hub import InferenceClient
|
6 |
|
|
|
|
|
|
|
7 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
8 |
|
9 |
generate_kwargs = dict(
|
@@ -36,7 +39,7 @@ def get_prompt_text(question, context, formatted = True):
|
|
36 |
return f"<s>" + f"[INST] {sys_instruction} " + f" {message} [/INST] </s> "
|
37 |
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
|
38 |
|
39 |
-
def get_references(question, retriever, k =
|
40 |
rag_out = retriever.search(query=question, k=k)
|
41 |
return rag_out
|
42 |
|
@@ -59,7 +62,7 @@ with gr.Blocks(theme = gr.themes.Soft()) as demo:
|
|
59 |
paper_title = f'''### [{title}](https://arxiv.org/abs/{rag_answer['document_id']})\n'''
|
60 |
paper_abs = rag_answer['content']
|
61 |
md_text_updated += paper_title + paper_abs + '\n---------------\n'+ '\n'
|
62 |
-
prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out))
|
63 |
return md_text_updated, prompt
|
64 |
|
65 |
def ask_llm(prompt):
|
|
|
4 |
from ragatouille import RAGPretrainedModel
|
5 |
from huggingface_hub import InferenceClient
|
6 |
|
7 |
+
retrieve_results = 10
|
8 |
+
llm_results = 5
|
9 |
+
|
10 |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
11 |
|
12 |
generate_kwargs = dict(
|
|
|
39 |
return f"<s>" + f"[INST] {sys_instruction} " + f" {message} [/INST] </s> "
|
40 |
return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"
|
41 |
|
42 |
+
def get_references(question, retriever, k = retrieve_results):
|
43 |
rag_out = retriever.search(query=question, k=k)
|
44 |
return rag_out
|
45 |
|
|
|
62 |
paper_title = f'''### [{title}](https://arxiv.org/abs/{rag_answer['document_id']})\n'''
|
63 |
paper_abs = rag_answer['content']
|
64 |
md_text_updated += paper_title + paper_abs + '\n---------------\n'+ '\n'
|
65 |
+
prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results]))
|
66 |
return md_text_updated, prompt
|
67 |
|
68 |
def ask_llm(prompt):
|