aisyahhrazak commited on
Commit
9536c0f
·
1 Parent(s): 04a5735

add custom prompt

Browse files
Files changed (1) hide show
  1. app.py +20 -5
app.py CHANGED
@@ -1,7 +1,7 @@
1
  import os
2
  import gradio as gr
3
  import pinecone
4
- from llama_index import GPTIndexMemory, GPTPineconeIndex
5
  from langchain.agents import Tool
6
  from langchain.chains.conversation.memory import ConversationBufferMemory
7
  from langchain import OpenAI
@@ -15,16 +15,31 @@ pinecone.init(api_key=PINECONE_API_KEY, environment="us-east1-gcp")
15
  pindex=pinecone.Index("sejarah")
16
  indexed_pinecone=GPTPineconeIndex([], pinecone_index=pindex)
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  tools = [
19
  Tool(
20
  name = "GPT Index",
21
- func=lambda q: str(indexed_pinecone.query(q)),
22
- description="useful for when you want to answer questions about the author. The input to this tool should be a complete english sentence.",
23
  return_direct=True
24
  )
25
  ]
26
  memory = GPTIndexMemory(index=indexed_pinecone, memory_key="chat_history", query_kwargs={"response_mode": "compact"})
27
- llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo")
28
  agent_chain = initialize_agent(tools, llm, agent="conversational-react-description", memory=memory, verbose=True)
29
 
30
  def predict(input, history=[]):
@@ -34,7 +49,7 @@ def predict(input, history=[]):
34
  # response = [response]
35
  # return response, response
36
  return response, response
37
- #test edit
38
  with gr.Blocks() as demo:
39
  chatbot = gr.Chatbot()
40
  state = gr.State([])
 
1
  import os
2
  import gradio as gr
3
  import pinecone
4
+ from llama_index import GPTIndexMemory, GPTPineconeIndex,QuestionAnswerPrompt
5
  from langchain.agents import Tool
6
  from langchain.chains.conversation.memory import ConversationBufferMemory
7
  from langchain import OpenAI
 
15
  pindex=pinecone.Index("sejarah")
16
  indexed_pinecone=GPTPineconeIndex([], pinecone_index=pindex)
17
 
18
+
19
+ QA_PROMPT_TMPL = (
20
+ "Answer each question truthfully using the Malaysia's Form 1 History textbook data provided."
21
+ "Your answers should be concise and straight to the point.For questions that are open-ended, which require subjective judgment or opinion, you may not find a definitive answer in the textbook."
22
+ "However, you should still address the question's directive based on the data's context. Ideally, your answer should provide 3 points that support your response. You are encouraged to better provide positive suggestions for concepts that are less ethical.Please keep in mind that the scope of the data provided is limited to the content covered in the Malaysia's Form 1 History textbook."
23
+ "If you do not know the answer please say 'I don't know, Please rephrase the question'\n"
24
+ "---------------------\n Context:\n"
25
+ "{context_str}"
26
+ "\n---------------------\n"
27
+ "Given this information, please answer the question: {query_str}\n"
28
+ )
29
+
30
+
31
+ QA_PROMPT = QuestionAnswerPrompt(QA_PROMPT_TMPL)
32
+
33
  tools = [
34
  Tool(
35
  name = "GPT Index",
36
+ func=lambda q: str(indexed_pinecone.query(q,text_qa_template=QA_PROMPT)),
37
+ description="Asking questions to Pandai AI",
38
  return_direct=True
39
  )
40
  ]
41
  memory = GPTIndexMemory(index=indexed_pinecone, memory_key="chat_history", query_kwargs={"response_mode": "compact"})
42
+ llm=OpenAI(temperature=0, model_name="text-davinci-003",max_tokens=1000)
43
  agent_chain = initialize_agent(tools, llm, agent="conversational-react-description", memory=memory, verbose=True)
44
 
45
  def predict(input, history=[]):
 
49
  # response = [response]
50
  # return response, response
51
  return response, response
52
+
53
  with gr.Blocks() as demo:
54
  chatbot = gr.Chatbot()
55
  state = gr.State([])