from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax import streamlit as st st.title("Tho Tran - Milestone2") # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment" tokenizer = AutoTokenizer.from_pretrained(MODEL) config = AutoConfig.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) tokenizer.save_pretrained(MODEL) text = st.text_input("Enter text here:","I love you") text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] # print(f"{i+1}) {l} {np.round(float(s), 4)}") st.write(l,np.round(float(s),4)) st.write("choosen model is https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment?text=T%27estimo%21")