thwri commited on
Commit
e4b4ce0
·
verified ·
1 Parent(s): 9fbde88

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +158 -0
app.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForCausalLM
3
+ import re
4
+ from PIL import Image
5
+ import os
6
+ import numpy as np
7
+
8
+ import spaces
9
+ import subprocess
10
+ subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
11
+
12
+ model = AutoModelForCausalLM.from_pretrained('thwri/CogFlorence-2.1-Large', trust_remote_code=True).to("cuda").eval()
13
+ processor = AutoProcessor.from_pretrained('thwri/CogFlorence-2.1-Large', trust_remote_code=True)
14
+
15
+ TITLE = "# [thwri/CogFlorence-2.1-Large]"
16
+ DESCRIPTION = "microsoft/Florence-2-large tuned on Ejafa/ye-pop captioned with CogVLM2"
17
+
18
+ def modify_caption(caption: str) -> str:
19
+ special_patterns = [
20
+ (r'the image is , ''),
21
+ (r'the image captures ', ''),
22
+ (r'the image showcases ', '')
23
+ (r'the image shows ', '')
24
+ (r'the image ', '')
25
+ ]
26
+
27
+ for pattern, replacement in special_patterns:
28
+ caption = re.sub(pattern, replacement, caption, flags=re.IGNORECASE)
29
+
30
+ caption = caption.replace('\n', '').replace('\r', '')
31
+ caption = re.sub(r'(?<=[.,?!])(?=[^\s])', r' ', caption)
32
+ caption = ' '.join(caption.strip().splitlines())
33
+
34
+ return caption
35
+
36
+ @spaces.GPU
37
+ def process_image(image):
38
+ if isinstance(image, np.ndarray):
39
+ image = Image.fromarray(image)
40
+ elif isinstance(image, str):
41
+ image = Image.open(image)
42
+ if image.mode != "RGB":
43
+ image = image.convert("RGB")
44
+
45
+ prompt = "<MORE_DETAILED_CAPTION>"
46
+
47
+ inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
48
+ generated_ids = model.generate(
49
+ input_ids=inputs["input_ids"],
50
+ pixel_values=inputs["pixel_values"],
51
+ max_new_tokens=1024,
52
+ num_beams=3,
53
+ do_sample=True
54
+ )
55
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
56
+ parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height))
57
+ return modify_caption(parsed_answer["<MORE_DETAILED_CAPTION>"])
58
+
59
+ def extract_frames(image_path, output_folder):
60
+ with Image.open(image_path) as img:
61
+ base_name = os.path.splitext(os.path.basename(image_path))[0]
62
+ frame_paths = []
63
+
64
+ try:
65
+ for i in range(0, img.n_frames):
66
+ img.seek(i)
67
+ frame_path = os.path.join(output_folder, f"{base_name}_frame_{i:03d}.png")
68
+ img.save(frame_path)
69
+ frame_paths.append(frame_path)
70
+ except EOFError:
71
+ pass # We've reached the end of the sequence
72
+
73
+ return frame_paths
74
+
75
+ def process_folder(folder_path):
76
+ if not os.path.isdir(folder_path):
77
+ return "Invalid folder path."
78
+
79
+ processed_files = []
80
+ skipped_files = []
81
+ for filename in os.listdir(folder_path):
82
+ if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp', '.webp', '.heic')):
83
+ image_path = os.path.join(folder_path, filename)
84
+ txt_filename = os.path.splitext(filename)[0] + '.txt'
85
+ txt_path = os.path.join(folder_path, txt_filename)
86
+
87
+ # Check if the corresponding text file already exists
88
+ if os.path.exists(txt_path):
89
+ skipped_files.append(f"Skipped {filename} (text file already exists)")
90
+ continue
91
+
92
+ # Check if the image has multiple frames
93
+ with Image.open(image_path) as img:
94
+ if getattr(img, "is_animated", False) and img.n_frames > 1:
95
+ # Extract frames
96
+ frames = extract_frames(image_path, folder_path)
97
+ for frame_path in frames:
98
+ frame_txt_filename = os.path.splitext(os.path.basename(frame_path))[0] + '.txt'
99
+ frame_txt_path = os.path.join(folder_path, frame_txt_filename)
100
+
101
+ # Check if the corresponding text file for the frame already exists
102
+ if os.path.exists(frame_txt_path):
103
+ skipped_files.append(f"Skipped {os.path.basename(frame_path)} (text file already exists)")
104
+ continue
105
+
106
+ caption = process_image(frame_path)
107
+
108
+ with open(frame_txt_path, 'w', encoding='utf-8') as f:
109
+ f.write(caption)
110
+
111
+ processed_files.append(f"Processed {os.path.basename(frame_path)} -> {frame_txt_filename}")
112
+ else:
113
+ # Process single image
114
+ caption = process_image(image_path)
115
+
116
+ with open(txt_path, 'w', encoding='utf-8') as f:
117
+ f.write(caption)
118
+
119
+ processed_files.append(f"Processed {filename} -> {txt_filename}")
120
+
121
+ result = "\n".join(processed_files + skipped_files)
122
+ return result if result else "No image files found or all files were skipped in the specified folder."
123
+
124
+ css = """
125
+ #output { height: 500px; overflow: auto; border: 1px solid #ccc; }
126
+ """
127
+
128
+ with gr.Blocks(css=css) as demo:
129
+ gr.Markdown(TITLE)
130
+ gr.Markdown(DESCRIPTION)
131
+
132
+ with gr.Tab(label="Single Image Processing"):
133
+ with gr.Row():
134
+ with gr.Column():
135
+ input_img = gr.Image(label="Input Picture")
136
+ submit_btn = gr.Button(value="Submit")
137
+ with gr.Column():
138
+ output_text = gr.Textbox(label="Output Text")
139
+
140
+ gr.Examples(
141
+ [["image1.jpg"], ["image2.jpg"], ["image3.png"], ["image4.jpg"], ["image5.jpg"], ["image6.PNG"]],
142
+ inputs=[input_img],
143
+ outputs=[output_text],
144
+ fn=process_image,
145
+ label='Try captioning on below examples'
146
+ )
147
+
148
+ submit_btn.click(process_image, [input_img], [output_text])
149
+
150
+ with gr.Tab(label="Batch Processing"):
151
+ with gr.Row():
152
+ folder_input = gr.Textbox(label="Input Folder Path")
153
+ batch_submit_btn = gr.Button(value="Process Folder")
154
+ batch_output = gr.Textbox(label="Batch Processing Results", lines=10)
155
+
156
+ batch_submit_btn.click(process_folder, [folder_input], [batch_output])
157
+
158
+ demo.launch(debug=True)