hellopahe commited on
Commit
e24946b
Β·
1 Parent(s): 77129d5
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import numpy
2
  import torch
3
  import gradio as gr
@@ -64,7 +66,8 @@ class LexRank(object):
64
  def __init__(self):
65
  self.model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
66
  self.ht = HarvestText()
67
- def find_central(self, content: str):
 
68
  sentences = self.ht.cut_sentences(content)
69
  embeddings = self.model.encode(sentences, convert_to_tensor=True).cpu()
70
 
@@ -77,7 +80,7 @@ class LexRank(object):
77
  # We argsort so that the first element is the sentence with the highest score
78
  most_central_sentence_indices = numpy.argsort(-centrality_scores)
79
 
80
- num = 100
81
  res = []
82
  for index in most_central_sentence_indices:
83
  if num < 0:
@@ -96,7 +99,8 @@ lex = LexRank()
96
 
97
 
98
  def randeng_extract(content):
99
- sentences = lex.find_central(content)
 
100
  output = "εŽŸζ–‡: \n"
101
  for index, sentence in enumerate(sentences):
102
  output += f"{index}: {sentence}\n"
 
1
+ import math
2
+
3
  import numpy
4
  import torch
5
  import gradio as gr
 
66
  def __init__(self):
67
  self.model = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
68
  self.ht = HarvestText()
69
+
70
+ def find_central(self, content: str, num=100):
71
  sentences = self.ht.cut_sentences(content)
72
  embeddings = self.model.encode(sentences, convert_to_tensor=True).cpu()
73
 
 
80
  # We argsort so that the first element is the sentence with the highest score
81
  most_central_sentence_indices = numpy.argsort(-centrality_scores)
82
 
83
+ # num = 100
84
  res = []
85
  for index in most_central_sentence_indices:
86
  if num < 0:
 
99
 
100
 
101
  def randeng_extract(content):
102
+ summary_length = math.ceil(len(content) / 10)
103
+ sentences = lex.find_central(content, num=summary_length)
104
  output = "εŽŸζ–‡: \n"
105
  for index, sentence in enumerate(sentences):
106
  output += f"{index}: {sentence}\n"