tinystyler_demo / app.py
AjayP13's picture
Update app.py
0872eb7 verified
raw
history blame
3.72 kB
import gradio as gr
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Load the model and tokenizer
model_name = "google/flan-t5-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
def concatenate_and_generate(source_text, target_example_texts, reranking, temperature, top_p):
concatenated_text = source_text + " " + target_example_texts
inputs = tokenizer(concatenated_text, return_tensors="pt")
# Generate the output with specified temperature and top_p
output = model.generate(
inputs["input_ids"],
do_sample=True,
temperature=temperature,
top_p=top_p,
max_length=100
)
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
return generated_text
# Preset examples with cached generations
preset_examples = [
{
"source_text": "Once upon a time in a small village",
"target_example_texts": "In a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness.",
"reranking": 5,
"temperature": 1.0,
"top_p": 1.0,
"output": "Once upon a time in a small village in a land far away, there was a kingdom ruled by a wise king. Every day, the people of the kingdom would gather to listen to the king's stories, which were full of wisdom and kindness."
},
{
"source_text": "The quick brown fox",
"target_example_texts": "A nimble, chocolate-colored fox swiftly darted through the emerald forest, weaving between trees with grace and agility.",
"reranking": 5,
"temperature": 0.9,
"top_p": 0.9,
"output": "The quick brown fox, a nimble, chocolate-colored fox, swiftly darted through the emerald forest, weaving between trees with grace and agility."
}
]
# Define Gradio interface
with gr.Blocks(theme="ParityError/[email protected]") as demo:
gr.Markdown("# TinyStyler Demo")
gr.Markdown("Style transfer the source text into the target style, given some example texts of the target style. You can adjust re-ranking and top_p to your desire to control the quality of style transfer. A higher re-ranking value will generally result in better results, at slower speed.")
source_text = gr.Textbox(lines=3, placeholder="Enter the source text to transform into the target style...", label="Source Text")
target_example_texts = gr.Textbox(lines=5, placeholder="Enter example texts of the target style (one per line)...", label="Example Texts of the Target Style")
reranking = gr.Slider(1, 10, value=5, step=1, label="Re-ranking")
temperature = gr.Slider(0.0, 2.0, value=1.0, step=0.1, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=1.0, step=0.1, label="Top-P")
output = gr.Markdown(label="Output")
def set_example(example):
return example["source_text"], example["target_example_texts"], example["reranking"], example["temperature"], example["top_p"], example["output"]
example_dropdown = gr.Dropdown(label="Preset Examples", choices=[f"Example {i+1}" for i in range(len(preset_examples))])
example_button = gr.Button("Load Example")
example_button.click(
lambda example_index: set_example(preset_examples[int(example_index.split()[-1])-1]),
inputs=[example_dropdown],
outputs=[source_text, target_example_texts, reranking, temperature, top_p, output]
)
btn = gr.Button("Generate")
btn.click(concatenate_and_generate, [source_text, target_example_texts, reranking, temperature, top_p], output)
demo.launch()