Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "google/flan-t5-large"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
def concatenate_and_generate(text1, text2, temperature, top_p):
|
10 |
+
concatenated_text = text1 + " " + text2
|
11 |
+
inputs = tokenizer(concatenated_text, return_tensors="pt")
|
12 |
+
|
13 |
+
# Generate the output with specified temperature and top_p
|
14 |
+
output = model.generate(
|
15 |
+
inputs["input_ids"],
|
16 |
+
do_sample=True,
|
17 |
+
temperature=temperature,
|
18 |
+
top_p=top_p,
|
19 |
+
max_length=100
|
20 |
+
)
|
21 |
+
|
22 |
+
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
23 |
+
return generated_text
|
24 |
+
|
25 |
+
# Define Gradio interface
|
26 |
+
inputs = [
|
27 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter first text here..."),
|
28 |
+
gr.inputs.Textbox(lines=2, placeholder="Enter second text here..."),
|
29 |
+
gr.inputs.Slider(0.1, 1.0, 0.7, step=0.1, label="Temperature"),
|
30 |
+
gr.inputs.Slider(0.1, 1.0, 0.9, step=0.1, label="Top-p")
|
31 |
+
]
|
32 |
+
outputs = gr.outputs.Textbox()
|
33 |
+
|
34 |
+
gr.Interface(
|
35 |
+
fn=concatenate_and_generate,
|
36 |
+
inputs=inputs,
|
37 |
+
outputs=outputs,
|
38 |
+
title="Text Concatenation and Generation with FLAN-T5",
|
39 |
+
description="Concatenate two input texts and generate an output using google/flan-t5-large. Adjust the temperature and top_p parameters for different generation behaviors."
|
40 |
+
).launch()
|