File size: 9,403 Bytes
8c70653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python3
"""Extract Mel spectrograms with teacher forcing."""

import argparse
import os

import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm

from TTS.config import load_config
from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.models import setup_model
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import count_parameters

use_cuda = torch.cuda.is_available()


def setup_loader(ap, r, verbose=False):
    tokenizer, _ = TTSTokenizer.init_from_config(c)
    dataset = TTSDataset(
        outputs_per_step=r,
        compute_linear_spec=False,
        samples=meta_data,
        tokenizer=tokenizer,
        ap=ap,
        batch_group_size=0,
        min_text_len=c.min_text_len,
        max_text_len=c.max_text_len,
        min_audio_len=c.min_audio_len,
        max_audio_len=c.max_audio_len,
        phoneme_cache_path=c.phoneme_cache_path,
        precompute_num_workers=0,
        use_noise_augment=False,
        verbose=verbose,
        speaker_id_mapping=speaker_manager.name_to_id if c.use_speaker_embedding else None,
        d_vector_mapping=speaker_manager.embeddings if c.use_d_vector_file else None,
    )

    if c.use_phonemes and c.compute_input_seq_cache:
        # precompute phonemes to have a better estimate of sequence lengths.
        dataset.compute_input_seq(c.num_loader_workers)
    dataset.preprocess_samples()

    loader = DataLoader(
        dataset,
        batch_size=c.batch_size,
        shuffle=False,
        collate_fn=dataset.collate_fn,
        drop_last=False,
        sampler=None,
        num_workers=c.num_loader_workers,
        pin_memory=False,
    )
    return loader


def set_filename(wav_path, out_path):
    wav_file = os.path.basename(wav_path)
    file_name = wav_file.split(".")[0]
    os.makedirs(os.path.join(out_path, "quant"), exist_ok=True)
    os.makedirs(os.path.join(out_path, "mel"), exist_ok=True)
    os.makedirs(os.path.join(out_path, "wav_gl"), exist_ok=True)
    os.makedirs(os.path.join(out_path, "wav"), exist_ok=True)
    wavq_path = os.path.join(out_path, "quant", file_name)
    mel_path = os.path.join(out_path, "mel", file_name)
    wav_gl_path = os.path.join(out_path, "wav_gl", file_name + ".wav")
    wav_path = os.path.join(out_path, "wav", file_name + ".wav")
    return file_name, wavq_path, mel_path, wav_gl_path, wav_path


def format_data(data):
    # setup input data
    text_input = data["token_id"]
    text_lengths = data["token_id_lengths"]
    mel_input = data["mel"]
    mel_lengths = data["mel_lengths"]
    item_idx = data["item_idxs"]
    d_vectors = data["d_vectors"]
    speaker_ids = data["speaker_ids"]
    attn_mask = data["attns"]
    avg_text_length = torch.mean(text_lengths.float())
    avg_spec_length = torch.mean(mel_lengths.float())

    # dispatch data to GPU
    if use_cuda:
        text_input = text_input.cuda(non_blocking=True)
        text_lengths = text_lengths.cuda(non_blocking=True)
        mel_input = mel_input.cuda(non_blocking=True)
        mel_lengths = mel_lengths.cuda(non_blocking=True)
        if speaker_ids is not None:
            speaker_ids = speaker_ids.cuda(non_blocking=True)
        if d_vectors is not None:
            d_vectors = d_vectors.cuda(non_blocking=True)
        if attn_mask is not None:
            attn_mask = attn_mask.cuda(non_blocking=True)
    return (
        text_input,
        text_lengths,
        mel_input,
        mel_lengths,
        speaker_ids,
        d_vectors,
        avg_text_length,
        avg_spec_length,
        attn_mask,
        item_idx,
    )


@torch.no_grad()
def inference(
    model_name,
    model,
    ap,
    text_input,
    text_lengths,
    mel_input,
    mel_lengths,
    speaker_ids=None,
    d_vectors=None,
):
    if model_name == "glow_tts":
        speaker_c = None
        if speaker_ids is not None:
            speaker_c = speaker_ids
        elif d_vectors is not None:
            speaker_c = d_vectors
        outputs = model.inference_with_MAS(
            text_input,
            text_lengths,
            mel_input,
            mel_lengths,
            aux_input={"d_vectors": speaker_c, "speaker_ids": speaker_ids},
        )
        model_output = outputs["model_outputs"]
        model_output = model_output.detach().cpu().numpy()

    elif "tacotron" in model_name:
        aux_input = {"speaker_ids": speaker_ids, "d_vectors": d_vectors}
        outputs = model(text_input, text_lengths, mel_input, mel_lengths, aux_input)
        postnet_outputs = outputs["model_outputs"]
        # normalize tacotron output
        if model_name == "tacotron":
            mel_specs = []
            postnet_outputs = postnet_outputs.data.cpu().numpy()
            for b in range(postnet_outputs.shape[0]):
                postnet_output = postnet_outputs[b]
                mel_specs.append(torch.FloatTensor(ap.out_linear_to_mel(postnet_output.T).T))
            model_output = torch.stack(mel_specs).cpu().numpy()

        elif model_name == "tacotron2":
            model_output = postnet_outputs.detach().cpu().numpy()
    return model_output


def extract_spectrograms(
    data_loader, model, ap, output_path, quantized_wav=False, save_audio=False, debug=False, metada_name="metada.txt"
):
    model.eval()
    export_metadata = []
    for _, data in tqdm(enumerate(data_loader), total=len(data_loader)):

        # format data
        (
            text_input,
            text_lengths,
            mel_input,
            mel_lengths,
            speaker_ids,
            d_vectors,
            _,
            _,
            _,
            item_idx,
        ) = format_data(data)

        model_output = inference(
            c.model.lower(),
            model,
            ap,
            text_input,
            text_lengths,
            mel_input,
            mel_lengths,
            speaker_ids,
            d_vectors,
        )

        for idx in range(text_input.shape[0]):
            wav_file_path = item_idx[idx]
            wav = ap.load_wav(wav_file_path)
            _, wavq_path, mel_path, wav_gl_path, wav_path = set_filename(wav_file_path, output_path)

            # quantize and save wav
            if quantized_wav:
                wavq = ap.quantize(wav)
                np.save(wavq_path, wavq)

            # save TTS mel
            mel = model_output[idx]
            mel_length = mel_lengths[idx]
            mel = mel[:mel_length, :].T
            np.save(mel_path, mel)

            export_metadata.append([wav_file_path, mel_path])
            if save_audio:
                ap.save_wav(wav, wav_path)

            if debug:
                print("Audio for debug saved at:", wav_gl_path)
                wav = ap.inv_melspectrogram(mel)
                ap.save_wav(wav, wav_gl_path)

    with open(os.path.join(output_path, metada_name), "w", encoding="utf-8") as f:
        for data in export_metadata:
            f.write(f"{data[0]}|{data[1]+'.npy'}\n")


def main(args):  # pylint: disable=redefined-outer-name
    # pylint: disable=global-variable-undefined
    global meta_data, speaker_manager

    # Audio processor
    ap = AudioProcessor(**c.audio)

    # load data instances
    meta_data_train, meta_data_eval = load_tts_samples(
        c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
    )

    # use eval and training partitions
    meta_data = meta_data_train + meta_data_eval

    # init speaker manager
    if c.use_speaker_embedding:
        speaker_manager = SpeakerManager(data_items=meta_data)
    elif c.use_d_vector_file:
        speaker_manager = SpeakerManager(d_vectors_file_path=c.d_vector_file)
    else:
        speaker_manager = None

    # setup model
    model = setup_model(c)

    # restore model
    model.load_checkpoint(c, args.checkpoint_path, eval=True)

    if use_cuda:
        model.cuda()

    num_params = count_parameters(model)
    print("\n > Model has {} parameters".format(num_params), flush=True)
    # set r
    r = 1 if c.model.lower() == "glow_tts" else model.decoder.r
    own_loader = setup_loader(ap, r, verbose=True)

    extract_spectrograms(
        own_loader,
        model,
        ap,
        args.output_path,
        quantized_wav=args.quantized,
        save_audio=args.save_audio,
        debug=args.debug,
        metada_name="metada.txt",
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config_path", type=str, help="Path to config file for training.", required=True)
    parser.add_argument("--checkpoint_path", type=str, help="Model file to be restored.", required=True)
    parser.add_argument("--output_path", type=str, help="Path to save mel specs", required=True)
    parser.add_argument("--debug", default=False, action="store_true", help="Save audio files for debug")
    parser.add_argument("--save_audio", default=False, action="store_true", help="Save audio files")
    parser.add_argument("--quantized", action="store_true", help="Save quantized audio files")
    parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
    args = parser.parse_args()

    c = load_config(args.config_path)
    c.audio.trim_silence = False
    main(args)