File size: 4,059 Bytes
8c70653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
import os
from dataclasses import dataclass, field
from coqpit import Coqpit
from trainer import TrainerArgs, get_last_checkpoint
from trainer.logging import logger_factory
from trainer.logging.console_logger import ConsoleLogger
from TTS.config import load_config, register_config
from TTS.tts.utils.text.characters import parse_symbols
from TTS.utils.generic_utils import get_experiment_folder_path, get_git_branch
from TTS.utils.io import copy_model_files
@dataclass
class TrainArgs(TrainerArgs):
config_path: str = field(default=None, metadata={"help": "Path to the config file."})
def getarguments():
train_config = TrainArgs()
parser = train_config.init_argparse(arg_prefix="")
return parser
def process_args(args, config=None):
"""Process parsed comand line arguments and initialize the config if not provided.
Args:
args (argparse.Namespace or dict like): Parsed input arguments.
config (Coqpit): Model config. If none, it is generated from `args`. Defaults to None.
Returns:
c (TTS.utils.io.AttrDict): Config paramaters.
out_path (str): Path to save models and logging.
audio_path (str): Path to save generated test audios.
c_logger (TTS.utils.console_logger.ConsoleLogger): Class that does
logging to the console.
dashboard_logger (WandbLogger or TensorboardLogger): Class that does the dashboard Logging
TODO:
- Interactive config definition.
"""
if isinstance(args, tuple):
args, coqpit_overrides = args
if args.continue_path:
# continue a previous training from its output folder
experiment_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
args.restore_path, best_model = get_last_checkpoint(args.continue_path)
if not args.best_path:
args.best_path = best_model
# init config if not already defined
if config is None:
if args.config_path:
# init from a file
config = load_config(args.config_path)
else:
# init from console args
from TTS.config.shared_configs import BaseTrainingConfig # pylint: disable=import-outside-toplevel
config_base = BaseTrainingConfig()
config_base.parse_known_args(coqpit_overrides)
config = register_config(config_base.model)()
# override values from command-line args
config.parse_known_args(coqpit_overrides, relaxed_parser=True)
experiment_path = args.continue_path
if not experiment_path:
experiment_path = get_experiment_folder_path(config.output_path, config.run_name)
audio_path = os.path.join(experiment_path, "test_audios")
config.output_log_path = experiment_path
# setup rank 0 process in distributed training
dashboard_logger = None
if args.rank == 0:
new_fields = {}
if args.restore_path:
new_fields["restore_path"] = args.restore_path
new_fields["github_branch"] = get_git_branch()
# if model characters are not set in the config file
# save the default set to the config file for future
# compatibility.
if config.has("characters") and config.characters is None:
used_characters = parse_symbols()
new_fields["characters"] = used_characters
copy_model_files(config, experiment_path, new_fields)
dashboard_logger = logger_factory(config, experiment_path)
c_logger = ConsoleLogger()
return config, experiment_path, audio_path, c_logger, dashboard_logger
def init_arguments():
train_config = TrainArgs()
parser = train_config.init_argparse(arg_prefix="")
return parser
def init_training(config: Coqpit = None):
"""Initialization of a training run."""
parser = init_arguments()
args = parser.parse_known_args()
config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger = process_args(args, config)
return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, dashboard_logger
|