File size: 6,964 Bytes
8c70653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import datetime
import json
import os
import pickle as pickle_tts
import shutil
from typing import Any, Callable, Dict, Union

import fsspec
import torch
from coqpit import Coqpit

from TTS.utils.generic_utils import get_user_data_dir


class RenamingUnpickler(pickle_tts.Unpickler):
    """Overload default pickler to solve module renaming problem"""

    def find_class(self, module, name):
        return super().find_class(module.replace("mozilla_voice_tts", "TTS"), name)


class AttrDict(dict):
    """A custom dict which converts dict keys
    to class attributes"""

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.__dict__ = self


def copy_model_files(config: Coqpit, out_path, new_fields=None):
    """Copy config.json and other model files to training folder and add
    new fields.

    Args:
        config (Coqpit): Coqpit config defining the training run.
        out_path (str): output path to copy the file.
        new_fields (dict): new fileds to be added or edited
            in the config file.
    """
    copy_config_path = os.path.join(out_path, "config.json")
    # add extra information fields
    if new_fields:
        config.update(new_fields, allow_new=True)
    # TODO: Revert to config.save_json() once Coqpit supports arbitrary paths.
    with fsspec.open(copy_config_path, "w", encoding="utf8") as f:
        json.dump(config.to_dict(), f, indent=4)

    # copy model stats file if available
    if config.audio.stats_path is not None:
        copy_stats_path = os.path.join(out_path, "scale_stats.npy")
        filesystem = fsspec.get_mapper(copy_stats_path).fs
        if not filesystem.exists(copy_stats_path):
            with fsspec.open(config.audio.stats_path, "rb") as source_file:
                with fsspec.open(copy_stats_path, "wb") as target_file:
                    shutil.copyfileobj(source_file, target_file)


def load_fsspec(
    path: str,
    map_location: Union[str, Callable, torch.device, Dict[Union[str, torch.device], Union[str, torch.device]]] = None,
    cache: bool = True,
    **kwargs,
) -> Any:
    """Like torch.load but can load from other locations (e.g. s3:// , gs://).

    Args:
        path: Any path or url supported by fsspec.
        map_location: torch.device or str.
        cache: If True, cache a remote file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to True.
        **kwargs: Keyword arguments forwarded to torch.load.

    Returns:
        Object stored in path.
    """
    is_local = os.path.isdir(path) or os.path.isfile(path)
    if cache and not is_local:
        with fsspec.open(
            f"filecache::{path}",
            filecache={"cache_storage": str(get_user_data_dir("tts_cache"))},
            mode="rb",
        ) as f:
            return torch.load(f, map_location=map_location, **kwargs)
    else:
        with fsspec.open(path, "rb") as f:
            return torch.load(f, map_location=map_location, **kwargs)


def load_checkpoint(
    model, checkpoint_path, use_cuda=False, eval=False, cache=False
):  # pylint: disable=redefined-builtin
    try:
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
    except ModuleNotFoundError:
        pickle_tts.Unpickler = RenamingUnpickler
        state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), pickle_module=pickle_tts, cache=cache)
    model.load_state_dict(state["model"])
    if use_cuda:
        model.cuda()
    if eval:
        model.eval()
    return model, state


def save_fsspec(state: Any, path: str, **kwargs):
    """Like torch.save but can save to other locations (e.g. s3:// , gs://).

    Args:
        state: State object to save
        path: Any path or url supported by fsspec.
        **kwargs: Keyword arguments forwarded to torch.save.
    """
    with fsspec.open(path, "wb") as f:
        torch.save(state, f, **kwargs)


def save_model(config, model, optimizer, scaler, current_step, epoch, output_path, **kwargs):
    if hasattr(model, "module"):
        model_state = model.module.state_dict()
    else:
        model_state = model.state_dict()
    if isinstance(optimizer, list):
        optimizer_state = [optim.state_dict() for optim in optimizer]
    elif optimizer.__class__.__name__ == "CapacitronOptimizer":
        optimizer_state = [optimizer.primary_optimizer.state_dict(), optimizer.secondary_optimizer.state_dict()]
    else:
        optimizer_state = optimizer.state_dict() if optimizer is not None else None

    if isinstance(scaler, list):
        scaler_state = [s.state_dict() for s in scaler]
    else:
        scaler_state = scaler.state_dict() if scaler is not None else None

    if isinstance(config, Coqpit):
        config = config.to_dict()

    state = {
        "config": config,
        "model": model_state,
        "optimizer": optimizer_state,
        "scaler": scaler_state,
        "step": current_step,
        "epoch": epoch,
        "date": datetime.date.today().strftime("%B %d, %Y"),
    }
    state.update(kwargs)
    save_fsspec(state, output_path)


def save_checkpoint(
    config,
    model,
    optimizer,
    scaler,
    current_step,
    epoch,
    output_folder,
    **kwargs,
):
    file_name = "checkpoint_{}.pth".format(current_step)
    checkpoint_path = os.path.join(output_folder, file_name)
    print("\n > CHECKPOINT : {}".format(checkpoint_path))
    save_model(
        config,
        model,
        optimizer,
        scaler,
        current_step,
        epoch,
        checkpoint_path,
        **kwargs,
    )


def save_best_model(
    current_loss,
    best_loss,
    config,
    model,
    optimizer,
    scaler,
    current_step,
    epoch,
    out_path,
    keep_all_best=False,
    keep_after=10000,
    **kwargs,
):
    if current_loss < best_loss:
        best_model_name = f"best_model_{current_step}.pth"
        checkpoint_path = os.path.join(out_path, best_model_name)
        print(" > BEST MODEL : {}".format(checkpoint_path))
        save_model(
            config,
            model,
            optimizer,
            scaler,
            current_step,
            epoch,
            checkpoint_path,
            model_loss=current_loss,
            **kwargs,
        )
        fs = fsspec.get_mapper(out_path).fs
        # only delete previous if current is saved successfully
        if not keep_all_best or (current_step < keep_after):
            model_names = fs.glob(os.path.join(out_path, "best_model*.pth"))
            for model_name in model_names:
                if os.path.basename(model_name) != best_model_name:
                    fs.rm(model_name)
        # create a shortcut which always points to the currently best model
        shortcut_name = "best_model.pth"
        shortcut_path = os.path.join(out_path, shortcut_name)
        fs.copy(checkpoint_path, shortcut_path)
        best_loss = current_loss
    return best_loss