File size: 6,964 Bytes
8c70653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import datetime
import json
import os
import pickle as pickle_tts
import shutil
from typing import Any, Callable, Dict, Union
import fsspec
import torch
from coqpit import Coqpit
from TTS.utils.generic_utils import get_user_data_dir
class RenamingUnpickler(pickle_tts.Unpickler):
"""Overload default pickler to solve module renaming problem"""
def find_class(self, module, name):
return super().find_class(module.replace("mozilla_voice_tts", "TTS"), name)
class AttrDict(dict):
"""A custom dict which converts dict keys
to class attributes"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.__dict__ = self
def copy_model_files(config: Coqpit, out_path, new_fields=None):
"""Copy config.json and other model files to training folder and add
new fields.
Args:
config (Coqpit): Coqpit config defining the training run.
out_path (str): output path to copy the file.
new_fields (dict): new fileds to be added or edited
in the config file.
"""
copy_config_path = os.path.join(out_path, "config.json")
# add extra information fields
if new_fields:
config.update(new_fields, allow_new=True)
# TODO: Revert to config.save_json() once Coqpit supports arbitrary paths.
with fsspec.open(copy_config_path, "w", encoding="utf8") as f:
json.dump(config.to_dict(), f, indent=4)
# copy model stats file if available
if config.audio.stats_path is not None:
copy_stats_path = os.path.join(out_path, "scale_stats.npy")
filesystem = fsspec.get_mapper(copy_stats_path).fs
if not filesystem.exists(copy_stats_path):
with fsspec.open(config.audio.stats_path, "rb") as source_file:
with fsspec.open(copy_stats_path, "wb") as target_file:
shutil.copyfileobj(source_file, target_file)
def load_fsspec(
path: str,
map_location: Union[str, Callable, torch.device, Dict[Union[str, torch.device], Union[str, torch.device]]] = None,
cache: bool = True,
**kwargs,
) -> Any:
"""Like torch.load but can load from other locations (e.g. s3:// , gs://).
Args:
path: Any path or url supported by fsspec.
map_location: torch.device or str.
cache: If True, cache a remote file locally for subsequent calls. It is cached under `get_user_data_dir()/tts_cache`. Defaults to True.
**kwargs: Keyword arguments forwarded to torch.load.
Returns:
Object stored in path.
"""
is_local = os.path.isdir(path) or os.path.isfile(path)
if cache and not is_local:
with fsspec.open(
f"filecache::{path}",
filecache={"cache_storage": str(get_user_data_dir("tts_cache"))},
mode="rb",
) as f:
return torch.load(f, map_location=map_location, **kwargs)
else:
with fsspec.open(path, "rb") as f:
return torch.load(f, map_location=map_location, **kwargs)
def load_checkpoint(
model, checkpoint_path, use_cuda=False, eval=False, cache=False
): # pylint: disable=redefined-builtin
try:
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
except ModuleNotFoundError:
pickle_tts.Unpickler = RenamingUnpickler
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), pickle_module=pickle_tts, cache=cache)
model.load_state_dict(state["model"])
if use_cuda:
model.cuda()
if eval:
model.eval()
return model, state
def save_fsspec(state: Any, path: str, **kwargs):
"""Like torch.save but can save to other locations (e.g. s3:// , gs://).
Args:
state: State object to save
path: Any path or url supported by fsspec.
**kwargs: Keyword arguments forwarded to torch.save.
"""
with fsspec.open(path, "wb") as f:
torch.save(state, f, **kwargs)
def save_model(config, model, optimizer, scaler, current_step, epoch, output_path, **kwargs):
if hasattr(model, "module"):
model_state = model.module.state_dict()
else:
model_state = model.state_dict()
if isinstance(optimizer, list):
optimizer_state = [optim.state_dict() for optim in optimizer]
elif optimizer.__class__.__name__ == "CapacitronOptimizer":
optimizer_state = [optimizer.primary_optimizer.state_dict(), optimizer.secondary_optimizer.state_dict()]
else:
optimizer_state = optimizer.state_dict() if optimizer is not None else None
if isinstance(scaler, list):
scaler_state = [s.state_dict() for s in scaler]
else:
scaler_state = scaler.state_dict() if scaler is not None else None
if isinstance(config, Coqpit):
config = config.to_dict()
state = {
"config": config,
"model": model_state,
"optimizer": optimizer_state,
"scaler": scaler_state,
"step": current_step,
"epoch": epoch,
"date": datetime.date.today().strftime("%B %d, %Y"),
}
state.update(kwargs)
save_fsspec(state, output_path)
def save_checkpoint(
config,
model,
optimizer,
scaler,
current_step,
epoch,
output_folder,
**kwargs,
):
file_name = "checkpoint_{}.pth".format(current_step)
checkpoint_path = os.path.join(output_folder, file_name)
print("\n > CHECKPOINT : {}".format(checkpoint_path))
save_model(
config,
model,
optimizer,
scaler,
current_step,
epoch,
checkpoint_path,
**kwargs,
)
def save_best_model(
current_loss,
best_loss,
config,
model,
optimizer,
scaler,
current_step,
epoch,
out_path,
keep_all_best=False,
keep_after=10000,
**kwargs,
):
if current_loss < best_loss:
best_model_name = f"best_model_{current_step}.pth"
checkpoint_path = os.path.join(out_path, best_model_name)
print(" > BEST MODEL : {}".format(checkpoint_path))
save_model(
config,
model,
optimizer,
scaler,
current_step,
epoch,
checkpoint_path,
model_loss=current_loss,
**kwargs,
)
fs = fsspec.get_mapper(out_path).fs
# only delete previous if current is saved successfully
if not keep_all_best or (current_step < keep_after):
model_names = fs.glob(os.path.join(out_path, "best_model*.pth"))
for model_name in model_names:
if os.path.basename(model_name) != best_model_name:
fs.rm(model_name)
# create a shortcut which always points to the currently best model
shortcut_name = "best_model.pth"
shortcut_path = os.path.join(out_path, shortcut_name)
fs.copy(checkpoint_path, shortcut_path)
best_loss = current_loss
return best_loss
|