File size: 5,983 Bytes
8c70653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.utils import weight_norm
class Conv1d(nn.Conv1d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
nn.init.orthogonal_(self.weight)
nn.init.zeros_(self.bias)
class PositionalEncoding(nn.Module):
"""Positional encoding with noise level conditioning"""
def __init__(self, n_channels, max_len=10000):
super().__init__()
self.n_channels = n_channels
self.max_len = max_len
self.C = 5000
self.pe = torch.zeros(0, 0)
def forward(self, x, noise_level):
if x.shape[2] > self.pe.shape[1]:
self.init_pe_matrix(x.shape[1], x.shape[2], x)
return x + noise_level[..., None, None] + self.pe[:, : x.size(2)].repeat(x.shape[0], 1, 1) / self.C
def init_pe_matrix(self, n_channels, max_len, x):
pe = torch.zeros(max_len, n_channels)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.pow(10000, torch.arange(0, n_channels, 2).float() / n_channels)
pe[:, 0::2] = torch.sin(position / div_term)
pe[:, 1::2] = torch.cos(position / div_term)
self.pe = pe.transpose(0, 1).to(x)
class FiLM(nn.Module):
def __init__(self, input_size, output_size):
super().__init__()
self.encoding = PositionalEncoding(input_size)
self.input_conv = nn.Conv1d(input_size, input_size, 3, padding=1)
self.output_conv = nn.Conv1d(input_size, output_size * 2, 3, padding=1)
nn.init.xavier_uniform_(self.input_conv.weight)
nn.init.xavier_uniform_(self.output_conv.weight)
nn.init.zeros_(self.input_conv.bias)
nn.init.zeros_(self.output_conv.bias)
def forward(self, x, noise_scale):
o = self.input_conv(x)
o = F.leaky_relu(o, 0.2)
o = self.encoding(o, noise_scale)
shift, scale = torch.chunk(self.output_conv(o), 2, dim=1)
return shift, scale
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.input_conv)
nn.utils.remove_weight_norm(self.output_conv)
def apply_weight_norm(self):
self.input_conv = weight_norm(self.input_conv)
self.output_conv = weight_norm(self.output_conv)
@torch.jit.script
def shif_and_scale(x, scale, shift):
o = shift + scale * x
return o
class UBlock(nn.Module):
def __init__(self, input_size, hidden_size, factor, dilation):
super().__init__()
assert isinstance(dilation, (list, tuple))
assert len(dilation) == 4
self.factor = factor
self.res_block = Conv1d(input_size, hidden_size, 1)
self.main_block = nn.ModuleList(
[
Conv1d(input_size, hidden_size, 3, dilation=dilation[0], padding=dilation[0]),
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[1], padding=dilation[1]),
]
)
self.out_block = nn.ModuleList(
[
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[2], padding=dilation[2]),
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[3], padding=dilation[3]),
]
)
def forward(self, x, shift, scale):
x_inter = F.interpolate(x, size=x.shape[-1] * self.factor)
res = self.res_block(x_inter)
o = F.leaky_relu(x_inter, 0.2)
o = F.interpolate(o, size=x.shape[-1] * self.factor)
o = self.main_block[0](o)
o = shif_and_scale(o, scale, shift)
o = F.leaky_relu(o, 0.2)
o = self.main_block[1](o)
res2 = res + o
o = shif_and_scale(res2, scale, shift)
o = F.leaky_relu(o, 0.2)
o = self.out_block[0](o)
o = shif_and_scale(o, scale, shift)
o = F.leaky_relu(o, 0.2)
o = self.out_block[1](o)
o = o + res2
return o
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.res_block)
for _, layer in enumerate(self.main_block):
if len(layer.state_dict()) != 0:
nn.utils.remove_weight_norm(layer)
for _, layer in enumerate(self.out_block):
if len(layer.state_dict()) != 0:
nn.utils.remove_weight_norm(layer)
def apply_weight_norm(self):
self.res_block = weight_norm(self.res_block)
for idx, layer in enumerate(self.main_block):
if len(layer.state_dict()) != 0:
self.main_block[idx] = weight_norm(layer)
for idx, layer in enumerate(self.out_block):
if len(layer.state_dict()) != 0:
self.out_block[idx] = weight_norm(layer)
class DBlock(nn.Module):
def __init__(self, input_size, hidden_size, factor):
super().__init__()
self.factor = factor
self.res_block = Conv1d(input_size, hidden_size, 1)
self.main_block = nn.ModuleList(
[
Conv1d(input_size, hidden_size, 3, dilation=1, padding=1),
Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2),
Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4),
]
)
def forward(self, x):
size = x.shape[-1] // self.factor
res = self.res_block(x)
res = F.interpolate(res, size=size)
o = F.interpolate(x, size=size)
for layer in self.main_block:
o = F.leaky_relu(o, 0.2)
o = layer(o)
return o + res
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.res_block)
for _, layer in enumerate(self.main_block):
if len(layer.state_dict()) != 0:
nn.utils.remove_weight_norm(layer)
def apply_weight_norm(self):
self.res_block = weight_norm(self.res_block)
for idx, layer in enumerate(self.main_block):
if len(layer.state_dict()) != 0:
self.main_block[idx] = weight_norm(layer)
|