File size: 6,448 Bytes
12da6cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
import haiku as hk
import jax
import jax.numpy as jnp
from jax.numpy import ndarray
from .config import FLAGS, AcousticInput, DurationInput
class TokenEncoder(hk.Module):
"""Encode phonemes/text to vector"""
def __init__(self, vocab_size, lstm_dim, dropout_rate, is_training=True):
super().__init__()
self.is_training = is_training
self.embed = hk.Embed(vocab_size, lstm_dim)
self.conv1 = hk.Conv1D(lstm_dim, 3, padding="SAME")
self.conv2 = hk.Conv1D(lstm_dim, 3, padding="SAME")
self.conv3 = hk.Conv1D(lstm_dim, 3, padding="SAME")
self.bn1 = hk.BatchNorm(True, True, 0.9)
self.bn2 = hk.BatchNorm(True, True, 0.9)
self.bn3 = hk.BatchNorm(True, True, 0.9)
self.lstm_fwd = hk.LSTM(lstm_dim)
self.lstm_bwd = hk.ResetCore(hk.LSTM(lstm_dim))
self.dropout_rate = dropout_rate
def __call__(self, x, lengths):
x = self.embed(x)
x = jax.nn.relu(self.bn1(self.conv1(x), is_training=self.is_training))
if self.is_training:
x = hk.dropout(hk.next_rng_key(), self.dropout_rate, x)
x = jax.nn.relu(self.bn2(self.conv2(x), is_training=self.is_training))
if self.is_training:
x = hk.dropout(hk.next_rng_key(), self.dropout_rate, x)
x = jax.nn.relu(self.bn3(self.conv3(x), is_training=self.is_training))
if self.is_training:
x = hk.dropout(hk.next_rng_key(), self.dropout_rate, x)
B, L, _ = x.shape
mask = jnp.arange(0, L)[None, :] >= (lengths[:, None] - 1)
h0c0_fwd = self.lstm_fwd.initial_state(B)
new_hx_fwd, _ = hk.dynamic_unroll(self.lstm_fwd, x, h0c0_fwd, time_major=False)
x_bwd, mask_bwd = jax.tree_map(lambda x: jnp.flip(x, axis=1), (x, mask))
h0c0_bwd = self.lstm_bwd.initial_state(B)
new_hx_bwd, _ = hk.dynamic_unroll(
self.lstm_bwd, (x_bwd, mask_bwd), h0c0_bwd, time_major=False
)
x = jnp.concatenate((new_hx_fwd, jnp.flip(new_hx_bwd, axis=1)), axis=-1)
return x
class DurationModel(hk.Module):
"""Duration model of phonemes."""
def __init__(self, is_training=True):
super().__init__()
self.is_training = is_training
self.encoder = TokenEncoder(
FLAGS.vocab_size,
FLAGS.duration_lstm_dim,
FLAGS.duration_embed_dropout_rate,
is_training,
)
self.projection = hk.Sequential(
[hk.Linear(FLAGS.duration_lstm_dim), jax.nn.gelu, hk.Linear(1)]
)
def __call__(self, inputs: DurationInput):
x = self.encoder(inputs.phonemes, inputs.lengths)
x = jnp.squeeze(self.projection(x), axis=-1)
x = jax.nn.softplus(x)
return x
class AcousticModel(hk.Module):
"""Predict melspectrogram from aligned phonemes"""
def __init__(self, is_training=True):
super().__init__()
self.is_training = is_training
self.encoder = TokenEncoder(
FLAGS.vocab_size, FLAGS.acoustic_encoder_dim, 0.5, is_training
)
self.decoder = hk.deep_rnn_with_skip_connections(
[hk.LSTM(FLAGS.acoustic_decoder_dim), hk.LSTM(FLAGS.acoustic_decoder_dim)]
)
self.projection = hk.Linear(FLAGS.mel_dim)
# prenet
self.prenet_fc1 = hk.Linear(256, with_bias=False)
self.prenet_fc2 = hk.Linear(256, with_bias=False)
# posnet
self.postnet_convs = [hk.Conv1D(FLAGS.postnet_dim, 5) for _ in range(4)]
self.postnet_convs.append(hk.Conv1D(FLAGS.mel_dim, 5))
self.postnet_bns = [hk.BatchNorm(True, True, 0.9) for _ in range(4)] + [None]
def prenet(self, x, dropout=0.5):
x = jax.nn.relu(self.prenet_fc1(x))
x = hk.dropout(hk.next_rng_key(), dropout, x)
x = jax.nn.relu(self.prenet_fc2(x))
x = hk.dropout(hk.next_rng_key(), dropout, x)
return x
def upsample(self, x, durations, L):
ruler = jnp.arange(0, L)[None, :] # B, L
end_pos = jnp.cumsum(durations, axis=1)
mid_pos = end_pos - durations / 2 # B, T
d2 = jnp.square((mid_pos[:, None, :] - ruler[:, :, None])) / 10.0
w = jax.nn.softmax(-d2, axis=-1)
hk.set_state("attn", w[0])
x = jnp.einsum("BLT,BTD->BLD", w, x)
return x
def postnet(self, mel: ndarray) -> ndarray:
x = mel
for conv, bn in zip(self.postnet_convs, self.postnet_bns):
x = conv(x)
if bn is not None:
x = bn(x, is_training=self.is_training)
x = jnp.tanh(x)
x = hk.dropout(hk.next_rng_key(), 0.5, x) if self.is_training else x
return x
def inference(self, tokens, durations, n_frames):
B, L = tokens.shape
lengths = jnp.array([L], dtype=jnp.int32)
x = self.encoder(tokens, lengths)
x = self.upsample(x, durations, n_frames)
def loop_fn(inputs, state):
cond = inputs
prev_mel, hxcx = state
prev_mel = self.prenet(prev_mel)
x = jnp.concatenate((cond, prev_mel), axis=-1)
x, new_hxcx = self.decoder(x, hxcx)
x = self.projection(x)
return x, (x, new_hxcx)
state = (
jnp.zeros((B, FLAGS.mel_dim), dtype=jnp.float32),
self.decoder.initial_state(B),
)
x, _ = hk.dynamic_unroll(loop_fn, x, state, time_major=False)
residual = self.postnet(x)
return x + residual
def __call__(self, inputs: AcousticInput):
x = self.encoder(inputs.phonemes, inputs.lengths)
x = self.upsample(x, inputs.durations, inputs.mels.shape[1])
mels = self.prenet(inputs.mels)
x = jnp.concatenate((x, mels), axis=-1)
B, L, _ = x.shape
hx = self.decoder.initial_state(B)
def zoneout_decoder(inputs, prev_state):
x, mask = inputs
x, state = self.decoder(x, prev_state)
state = jax.tree_map(
lambda m, s1, s2: s1 * m + s2 * (1 - m), mask, prev_state, state
)
return x, state
mask = jax.tree_map(
lambda x: jax.random.bernoulli(hk.next_rng_key(), 0.1, (B, L, x.shape[-1])),
hx,
)
x, _ = hk.dynamic_unroll(zoneout_decoder, (x, mask), hx, time_major=False)
x = self.projection(x)
residual = self.postnet(x)
return x, x + residual
|