File size: 6,066 Bytes
12da6cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import pickle
from functools import partial
from typing import Deque

import haiku as hk
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import optax
from tqdm.auto import tqdm
from vietTTS.nat.config import AcousticInput

from .config import FLAGS, AcousticInput
from .data_loader import load_textgrid_wav
from .dsp import MelFilter
from .model import AcousticModel
from .utils import print_flags


@hk.transform_with_state
def net(x):
    return AcousticModel(is_training=True)(x)


@hk.transform_with_state
def val_net(x):
    return AcousticModel(is_training=False)(x)


def loss_fn(params, aux, rng, inputs: AcousticInput, is_training=True):
    """Compute loss"""
    melfilter = MelFilter(
        FLAGS.sample_rate, FLAGS.n_fft, FLAGS.mel_dim, FLAGS.fmin, FLAGS.fmax
    )
    wavs = inputs.wavs.astype(jnp.float32) / (2**15)
    mels = melfilter(wavs)
    B, L, D = mels.shape
    go_frame = jnp.zeros((B, 1, D), dtype=jnp.float32)
    inp_mels = jnp.concatenate((go_frame, mels[:, :-1, :]), axis=1)
    n_frames = inputs.durations * FLAGS.sample_rate / (FLAGS.n_fft // 4)
    inputs = inputs._replace(mels=inp_mels, durations=n_frames)
    model = net if is_training else val_net
    (mel1_hat, mel2_hat), new_aux = model.apply(params, aux, rng, inputs)
    loss1 = (jnp.square(mel1_hat - mels) + jnp.square(mel2_hat - mels)) / 2
    loss2 = (jnp.abs(mel1_hat - mels) + jnp.abs(mel2_hat - mels)) / 2
    loss = jnp.mean((loss1 + loss2) / 2, axis=-1)
    num_frames = (inputs.wav_lengths // (FLAGS.n_fft // 4))[:, None]
    mask = jnp.arange(0, L)[None, :] < num_frames
    loss = jnp.sum(loss * mask) / jnp.sum(mask)
    return (loss, new_aux) if is_training else (loss, new_aux, mel2_hat, mels)


train_loss_fn = partial(loss_fn, is_training=True)
val_loss_fn = jax.jit(partial(loss_fn, is_training=False))

loss_vag = jax.value_and_grad(train_loss_fn, has_aux=True)


def initial_state(optimizer, batch):
    rng = jax.random.PRNGKey(42)
    params, aux = hk.transform_with_state(lambda x: AcousticModel(True)(x)).init(
        rng, batch
    )
    optim_state = optimizer.init(params)
    return params, aux, rng, optim_state


def train():

    optimizer = optax.chain(
        optax.clip_by_global_norm(1.0),
        optax.adamw(FLAGS.learning_rate, weight_decay=FLAGS.weight_decay),
    )

    @jax.jit
    def update(params, aux, rng, optim_state, inputs):
        rng, new_rng = jax.random.split(rng)
        (loss, new_aux), grads = loss_vag(params, aux, rng, inputs)
        updates, new_optim_state = optimizer.update(grads, optim_state, params)
        new_params = optax.apply_updates(updates, params)
        return loss, (new_params, new_aux, new_rng, new_optim_state)

    train_data_iter = load_textgrid_wav(
        FLAGS.data_dir,
        FLAGS.max_phoneme_seq_len,
        FLAGS.batch_size,
        FLAGS.max_wave_len,
        "train",
    )
    val_data_iter = load_textgrid_wav(
        FLAGS.data_dir,
        FLAGS.max_phoneme_seq_len,
        FLAGS.batch_size,
        FLAGS.max_wave_len,
        "val",
    )
    melfilter = MelFilter(
        FLAGS.sample_rate, FLAGS.n_fft, FLAGS.mel_dim, FLAGS.fmin, FLAGS.fmax
    )
    batch = next(train_data_iter)
    batch = batch._replace(mels=melfilter(batch.wavs.astype(jnp.float32) / (2**15)))
    params, aux, rng, optim_state = initial_state(optimizer, batch)
    losses = Deque(maxlen=1000)
    val_losses = Deque(maxlen=100)

    last_step = -1

    # loading latest checkpoint
    ckpt_fn = FLAGS.ckpt_dir / "acoustic_latest_ckpt.pickle"
    if ckpt_fn.exists():
        print("Resuming from latest checkpoint at", ckpt_fn)
        with open(ckpt_fn, "rb") as f:
            dic = pickle.load(f)
            last_step, params, aux, rng, optim_state = (
                dic["step"],
                dic["params"],
                dic["aux"],
                dic["rng"],
                dic["optim_state"],
            )

    tr = tqdm(
        range(last_step + 1, FLAGS.num_training_steps + 1),
        desc="training",
        total=FLAGS.num_training_steps + 1,
        initial=last_step + 1,
    )
    for step in tr:
        batch = next(train_data_iter)
        loss, (params, aux, rng, optim_state) = update(
            params, aux, rng, optim_state, batch
        )
        losses.append(loss)

        if step % 10 == 0:
            val_batch = next(val_data_iter)
            val_loss, val_aux, predicted_mel, gt_mel = val_loss_fn(
                params, aux, rng, val_batch
            )
            val_losses.append(val_loss)
            attn = jax.device_get(val_aux["acoustic_model"]["attn"])
            predicted_mel = jax.device_get(predicted_mel[0])
            gt_mel = jax.device_get(gt_mel[0])

        if step % 1000 == 0:
            loss = sum(losses).item() / len(losses)
            val_loss = sum(val_losses).item() / len(val_losses)
            tr.write(f"step {step}  train loss {loss:.3f}  val loss {val_loss:.3f}")

            # saving predicted mels
            plt.figure(figsize=(10, 10))
            plt.subplot(3, 1, 1)
            plt.imshow(predicted_mel.T, origin="lower", aspect="auto")
            plt.subplot(3, 1, 2)
            plt.imshow(gt_mel.T, origin="lower", aspect="auto")
            plt.subplot(3, 1, 3)
            plt.imshow(attn.T, origin="lower", aspect="auto")
            plt.tight_layout()
            plt.savefig(FLAGS.ckpt_dir / f"mel_{step:06d}.png")
            plt.close()

            # saving checkpoint
            with open(ckpt_fn, "wb") as f:
                pickle.dump(
                    {
                        "step": step,
                        "params": params,
                        "aux": aux,
                        "rng": rng,
                        "optim_state": optim_state,
                    },
                    f,
                )


if __name__ == "__main__":
    print_flags(FLAGS.__dict__)
    if not FLAGS.ckpt_dir.exists():
        print("Create checkpoint dir at", FLAGS.ckpt_dir)
        FLAGS.ckpt_dir.mkdir(parents=True, exist_ok=True)
    train()