File size: 6,066 Bytes
12da6cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import pickle
from functools import partial
from typing import Deque
import haiku as hk
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import optax
from tqdm.auto import tqdm
from vietTTS.nat.config import AcousticInput
from .config import FLAGS, AcousticInput
from .data_loader import load_textgrid_wav
from .dsp import MelFilter
from .model import AcousticModel
from .utils import print_flags
@hk.transform_with_state
def net(x):
return AcousticModel(is_training=True)(x)
@hk.transform_with_state
def val_net(x):
return AcousticModel(is_training=False)(x)
def loss_fn(params, aux, rng, inputs: AcousticInput, is_training=True):
"""Compute loss"""
melfilter = MelFilter(
FLAGS.sample_rate, FLAGS.n_fft, FLAGS.mel_dim, FLAGS.fmin, FLAGS.fmax
)
wavs = inputs.wavs.astype(jnp.float32) / (2**15)
mels = melfilter(wavs)
B, L, D = mels.shape
go_frame = jnp.zeros((B, 1, D), dtype=jnp.float32)
inp_mels = jnp.concatenate((go_frame, mels[:, :-1, :]), axis=1)
n_frames = inputs.durations * FLAGS.sample_rate / (FLAGS.n_fft // 4)
inputs = inputs._replace(mels=inp_mels, durations=n_frames)
model = net if is_training else val_net
(mel1_hat, mel2_hat), new_aux = model.apply(params, aux, rng, inputs)
loss1 = (jnp.square(mel1_hat - mels) + jnp.square(mel2_hat - mels)) / 2
loss2 = (jnp.abs(mel1_hat - mels) + jnp.abs(mel2_hat - mels)) / 2
loss = jnp.mean((loss1 + loss2) / 2, axis=-1)
num_frames = (inputs.wav_lengths // (FLAGS.n_fft // 4))[:, None]
mask = jnp.arange(0, L)[None, :] < num_frames
loss = jnp.sum(loss * mask) / jnp.sum(mask)
return (loss, new_aux) if is_training else (loss, new_aux, mel2_hat, mels)
train_loss_fn = partial(loss_fn, is_training=True)
val_loss_fn = jax.jit(partial(loss_fn, is_training=False))
loss_vag = jax.value_and_grad(train_loss_fn, has_aux=True)
def initial_state(optimizer, batch):
rng = jax.random.PRNGKey(42)
params, aux = hk.transform_with_state(lambda x: AcousticModel(True)(x)).init(
rng, batch
)
optim_state = optimizer.init(params)
return params, aux, rng, optim_state
def train():
optimizer = optax.chain(
optax.clip_by_global_norm(1.0),
optax.adamw(FLAGS.learning_rate, weight_decay=FLAGS.weight_decay),
)
@jax.jit
def update(params, aux, rng, optim_state, inputs):
rng, new_rng = jax.random.split(rng)
(loss, new_aux), grads = loss_vag(params, aux, rng, inputs)
updates, new_optim_state = optimizer.update(grads, optim_state, params)
new_params = optax.apply_updates(updates, params)
return loss, (new_params, new_aux, new_rng, new_optim_state)
train_data_iter = load_textgrid_wav(
FLAGS.data_dir,
FLAGS.max_phoneme_seq_len,
FLAGS.batch_size,
FLAGS.max_wave_len,
"train",
)
val_data_iter = load_textgrid_wav(
FLAGS.data_dir,
FLAGS.max_phoneme_seq_len,
FLAGS.batch_size,
FLAGS.max_wave_len,
"val",
)
melfilter = MelFilter(
FLAGS.sample_rate, FLAGS.n_fft, FLAGS.mel_dim, FLAGS.fmin, FLAGS.fmax
)
batch = next(train_data_iter)
batch = batch._replace(mels=melfilter(batch.wavs.astype(jnp.float32) / (2**15)))
params, aux, rng, optim_state = initial_state(optimizer, batch)
losses = Deque(maxlen=1000)
val_losses = Deque(maxlen=100)
last_step = -1
# loading latest checkpoint
ckpt_fn = FLAGS.ckpt_dir / "acoustic_latest_ckpt.pickle"
if ckpt_fn.exists():
print("Resuming from latest checkpoint at", ckpt_fn)
with open(ckpt_fn, "rb") as f:
dic = pickle.load(f)
last_step, params, aux, rng, optim_state = (
dic["step"],
dic["params"],
dic["aux"],
dic["rng"],
dic["optim_state"],
)
tr = tqdm(
range(last_step + 1, FLAGS.num_training_steps + 1),
desc="training",
total=FLAGS.num_training_steps + 1,
initial=last_step + 1,
)
for step in tr:
batch = next(train_data_iter)
loss, (params, aux, rng, optim_state) = update(
params, aux, rng, optim_state, batch
)
losses.append(loss)
if step % 10 == 0:
val_batch = next(val_data_iter)
val_loss, val_aux, predicted_mel, gt_mel = val_loss_fn(
params, aux, rng, val_batch
)
val_losses.append(val_loss)
attn = jax.device_get(val_aux["acoustic_model"]["attn"])
predicted_mel = jax.device_get(predicted_mel[0])
gt_mel = jax.device_get(gt_mel[0])
if step % 1000 == 0:
loss = sum(losses).item() / len(losses)
val_loss = sum(val_losses).item() / len(val_losses)
tr.write(f"step {step} train loss {loss:.3f} val loss {val_loss:.3f}")
# saving predicted mels
plt.figure(figsize=(10, 10))
plt.subplot(3, 1, 1)
plt.imshow(predicted_mel.T, origin="lower", aspect="auto")
plt.subplot(3, 1, 2)
plt.imshow(gt_mel.T, origin="lower", aspect="auto")
plt.subplot(3, 1, 3)
plt.imshow(attn.T, origin="lower", aspect="auto")
plt.tight_layout()
plt.savefig(FLAGS.ckpt_dir / f"mel_{step:06d}.png")
plt.close()
# saving checkpoint
with open(ckpt_fn, "wb") as f:
pickle.dump(
{
"step": step,
"params": params,
"aux": aux,
"rng": rng,
"optim_state": optim_state,
},
f,
)
if __name__ == "__main__":
print_flags(FLAGS.__dict__)
if not FLAGS.ckpt_dir.exists():
print("Create checkpoint dir at", FLAGS.ckpt_dir)
FLAGS.ckpt_dir.mkdir(parents=True, exist_ok=True)
train()
|