File size: 17,185 Bytes
8c70653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import time
from typing import List

import numpy as np
import pysbd
import torch

from TTS.config import load_config
from TTS.tts.models import setup_model as setup_tts_model

# pylint: disable=unused-wildcard-import
# pylint: disable=wildcard-import
from TTS.tts.utils.synthesis import synthesis, transfer_voice, trim_silence
from TTS.utils.audio import AudioProcessor
from TTS.vocoder.models import setup_model as setup_vocoder_model
from TTS.vocoder.utils.generic_utils import interpolate_vocoder_input


class Synthesizer(object):
    def __init__(
        self,
        tts_checkpoint: str,
        tts_config_path: str,
        tts_speakers_file: str = "",
        tts_languages_file: str = "",
        vocoder_checkpoint: str = "",
        vocoder_config: str = "",
        encoder_checkpoint: str = "",
        encoder_config: str = "",
        use_cuda: bool = False,
    ) -> None:
        """General 🐸 TTS interface for inference. It takes a tts and a vocoder
        model and synthesize speech from the provided text.

        The text is divided into a list of sentences using `pysbd` and synthesize
        speech on each sentence separately.

        If you have certain special characters in your text, you need to handle
        them before providing the text to Synthesizer.

        TODO: set the segmenter based on the source language

        Args:
            tts_checkpoint (str): path to the tts model file.
            tts_config_path (str): path to the tts config file.
            vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None.
            vocoder_config (str, optional): path to the vocoder config file. Defaults to None.
            encoder_checkpoint (str, optional): path to the speaker encoder model file. Defaults to `""`,
            encoder_config (str, optional): path to the speaker encoder config file. Defaults to `""`,
            use_cuda (bool, optional): enable/disable cuda. Defaults to False.
        """
        self.tts_checkpoint = tts_checkpoint
        self.tts_config_path = tts_config_path
        self.tts_speakers_file = tts_speakers_file
        self.tts_languages_file = tts_languages_file
        self.vocoder_checkpoint = vocoder_checkpoint
        self.vocoder_config = vocoder_config
        self.encoder_checkpoint = encoder_checkpoint
        self.encoder_config = encoder_config
        self.use_cuda = use_cuda

        self.tts_model = None
        self.vocoder_model = None
        self.speaker_manager = None
        self.num_speakers = 0
        self.tts_speakers = {}
        self.language_manager = None
        self.num_languages = 0
        self.tts_languages = {}
        self.d_vector_dim = 0
        self.seg = self._get_segmenter("en")
        self.use_cuda = use_cuda

        if self.use_cuda:
            assert torch.cuda.is_available(), "CUDA is not availabe on this machine."
        self._load_tts(tts_checkpoint, tts_config_path, use_cuda)
        self.output_sample_rate = self.tts_config.audio["sample_rate"]
        if vocoder_checkpoint:
            self._load_vocoder(vocoder_checkpoint, vocoder_config, use_cuda)
            self.output_sample_rate = self.vocoder_config.audio["sample_rate"]

    @staticmethod
    def _get_segmenter(lang: str):
        """get the sentence segmenter for the given language.

        Args:
            lang (str): target language code.

        Returns:
            [type]: [description]
        """
        return pysbd.Segmenter(language=lang, clean=True)

    def _load_tts(self, tts_checkpoint: str, tts_config_path: str, use_cuda: bool) -> None:
        """Load the TTS model.

        1. Load the model config.
        2. Init the model from the config.
        3. Load the model weights.
        4. Move the model to the GPU if CUDA is enabled.
        5. Init the speaker manager in the model.

        Args:
            tts_checkpoint (str): path to the model checkpoint.
            tts_config_path (str): path to the model config file.
            use_cuda (bool): enable/disable CUDA use.
        """
        # pylint: disable=global-statement
        self.tts_config = load_config(tts_config_path)
        if self.tts_config["use_phonemes"] and self.tts_config["phonemizer"] is None:
            raise ValueError("Phonemizer is not defined in the TTS config.")

        self.tts_model = setup_tts_model(config=self.tts_config)

        if not self.encoder_checkpoint:
            self._set_speaker_encoder_paths_from_tts_config()

        self.tts_model.load_checkpoint(self.tts_config, tts_checkpoint, eval=True)
        if use_cuda:
            self.tts_model.cuda()

        if self.encoder_checkpoint and hasattr(self.tts_model, "speaker_manager"):
            self.tts_model.speaker_manager.init_encoder(self.encoder_checkpoint, self.encoder_config, use_cuda)

    def _set_speaker_encoder_paths_from_tts_config(self):
        """Set the encoder paths from the tts model config for models with speaker encoders."""
        if hasattr(self.tts_config, "model_args") and hasattr(
            self.tts_config.model_args, "speaker_encoder_config_path"
        ):
            self.encoder_checkpoint = self.tts_config.model_args.speaker_encoder_model_path
            self.encoder_config = self.tts_config.model_args.speaker_encoder_config_path

    def _load_vocoder(self, model_file: str, model_config: str, use_cuda: bool) -> None:
        """Load the vocoder model.

        1. Load the vocoder config.
        2. Init the AudioProcessor for the vocoder.
        3. Init the vocoder model from the config.
        4. Move the model to the GPU if CUDA is enabled.

        Args:
            model_file (str): path to the model checkpoint.
            model_config (str): path to the model config file.
            use_cuda (bool): enable/disable CUDA use.
        """
        self.vocoder_config = load_config(model_config)
        self.vocoder_ap = AudioProcessor(verbose=False, **self.vocoder_config.audio)
        self.vocoder_model = setup_vocoder_model(self.vocoder_config)
        self.vocoder_model.load_checkpoint(self.vocoder_config, model_file, eval=True)
        if use_cuda:
            self.vocoder_model.cuda()

    def split_into_sentences(self, text) -> List[str]:
        """Split give text into sentences.

        Args:
            text (str): input text in string format.

        Returns:
            List[str]: list of sentences.
        """
        return self.seg.segment(text)

    def save_wav(self, wav: List[int], path: str) -> None:
        """Save the waveform as a file.

        Args:
            wav (List[int]): waveform as a list of values.
            path (str): output path to save the waveform.
        """
        wav = np.array(wav)
        self.tts_model.ap.save_wav(wav, path, self.output_sample_rate)

    def tts(
        self,
        text: str = "",
        speaker_name: str = "",
        language_name: str = "",
        speaker_wav=None,
        style_wav=None,
        style_text=None,
        reference_wav=None,
        reference_speaker_name=None,
    ) -> List[int]:
        """🐸 TTS magic. Run all the models and generate speech.

        Args:
            text (str): input text.
            speaker_name (str, optional): spekaer id for multi-speaker models. Defaults to "".
            language_name (str, optional): language id for multi-language models. Defaults to "".
            speaker_wav (Union[str, List[str]], optional): path to the speaker wav. Defaults to None.
            style_wav ([type], optional): style waveform for GST. Defaults to None.
            style_text ([type], optional): transcription of style_wav for Capacitron. Defaults to None.
            reference_wav ([type], optional): reference waveform for voice conversion. Defaults to None.
            reference_speaker_name ([type], optional): spekaer id of reference waveform. Defaults to None.
        Returns:
            List[int]: [description]
        """
        start_time = time.time()
        wavs = []

        if not text and not reference_wav:
            raise ValueError(
                "You need to define either `text` (for sythesis) or a `reference_wav` (for voice conversion) to use the Coqui TTS API."
            )

        if text:
            sens = self.split_into_sentences(text)
            print(" > Text splitted to sentences.")
            print(sens)

        # handle multi-speaker
        speaker_embedding = None
        speaker_id = None
        if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"):
            if speaker_name and isinstance(speaker_name, str):
                if self.tts_config.use_d_vector_file:
                    # get the average speaker embedding from the saved d_vectors.
                    speaker_embedding = self.tts_model.speaker_manager.get_mean_embedding(
                        speaker_name, num_samples=None, randomize=False
                    )
                    speaker_embedding = np.array(speaker_embedding)[None, :]  # [1 x embedding_dim]
                else:
                    # get speaker idx from the speaker name
                    speaker_id = self.tts_model.speaker_manager.name_to_id[speaker_name]

            elif not speaker_name and not speaker_wav:
                raise ValueError(
                    " [!] Look like you use a multi-speaker model. "
                    "You need to define either a `speaker_name` or a `speaker_wav` to use a multi-speaker model."
                )
            else:
                speaker_embedding = None
        else:
            if speaker_name:
                raise ValueError(
                    f" [!] Missing speakers.json file path for selecting speaker {speaker_name}."
                    "Define path for speaker.json if it is a multi-speaker model or remove defined speaker idx. "
                )

        # handle multi-lingaul
        language_id = None
        if self.tts_languages_file or (
            hasattr(self.tts_model, "language_manager") and self.tts_model.language_manager is not None
        ):
            if language_name and isinstance(language_name, str):
                language_id = self.tts_model.language_manager.name_to_id[language_name]

            elif not language_name:
                raise ValueError(
                    " [!] Look like you use a multi-lingual model. "
                    "You need to define either a `language_name` or a `style_wav` to use a multi-lingual model."
                )

            else:
                raise ValueError(
                    f" [!] Missing language_ids.json file path for selecting language {language_name}."
                    "Define path for language_ids.json if it is a multi-lingual model or remove defined language idx. "
                )

        # compute a new d_vector from the given clip.
        if speaker_wav is not None:
            speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip(speaker_wav)

        use_gl = self.vocoder_model is None
        print(f" > Processing time: hihi")
        if not reference_wav:
            print(f" > Processing time: hihhii")
            for sen in sens:
                # synthesize voice
                outputs = synthesis(
                    model=self.tts_model,
                    text=sen,
                    CONFIG=self.tts_config,
                    use_cuda=self.use_cuda,
                    speaker_id=speaker_id,
                    style_wav=style_wav,
                    style_text=style_text,
                    use_griffin_lim=use_gl,
                    d_vector=speaker_embedding,
                    language_id=language_id,
                )
                waveform = outputs["wav"]
                mel_postnet_spec = outputs["outputs"]["model_outputs"][0].detach().cpu().numpy()
                if not use_gl:
                    print(f" >Not use gl")
                    # denormalize tts output based on tts audio config
                    mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T
                    device_type = "cuda" if self.use_cuda else "cpu"
                    # renormalize spectrogram based on vocoder config
                    vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
                    # compute scale factor for possible sample rate mismatch
                    scale_factor = [
                        1,
                        self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate,
                    ]
                    if scale_factor[1] != 1:
                        print(" > interpolating tts model output.")
                        vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
                    else:
                        vocoder_input = torch.tensor(vocoder_input).unsqueeze(0)  # pylint: disable=not-callable
                    # run vocoder model
                    # [1, T, C]
                    waveform = self.vocoder_model.inference(vocoder_input.to(device_type))
                if self.use_cuda and not use_gl:
                    waveform = waveform.cpu()
                if not use_gl:
                    waveform = waveform.numpy()
                waveform = waveform.squeeze()

                # trim silence
                if "do_trim_silence" in self.tts_config.audio and self.tts_config.audio["do_trim_silence"]:
                    waveform = trim_silence(waveform, self.tts_model.ap)

                wavs += list(waveform)
                wavs += [0] * 10000
        else:
            print(f" > Processing time: hidsahi")
            print(f"ascascascascascascascascascascascascascascascascascascascascascascascascascascascascascascascasc")
            # get the speaker embedding or speaker id for the reference wav file
            reference_speaker_embedding = None
            reference_speaker_id = None
            if self.tts_speakers_file or hasattr(self.tts_model.speaker_manager, "name_to_id"):
                if reference_speaker_name and isinstance(reference_speaker_name, str):
                    if self.tts_config.use_d_vector_file:
                        # get the speaker embedding from the saved d_vectors.
                        reference_speaker_embedding = self.tts_model.speaker_manager.get_embeddings_by_name(
                            reference_speaker_name
                        )[0]
                        reference_speaker_embedding = np.array(reference_speaker_embedding)[
                            None, :
                        ]  # [1 x embedding_dim]
                    else:
                        # get speaker idx from the speaker name
                        reference_speaker_id = self.tts_model.speaker_manager.name_to_id[reference_speaker_name]
                else:
                    reference_speaker_embedding = self.tts_model.speaker_manager.compute_embedding_from_clip(
                        reference_wav
                    )
            outputs = transfer_voice(
                model=self.tts_model,
                CONFIG=self.tts_config,
                use_cuda=self.use_cuda,
                reference_wav=reference_wav,
                speaker_id=speaker_id,
                d_vector=speaker_embedding,
                use_griffin_lim=use_gl,
                reference_speaker_id=reference_speaker_id,
                reference_d_vector=reference_speaker_embedding,
            )
            waveform = outputs
            if not use_gl:
                mel_postnet_spec = outputs[0].detach().cpu().numpy()
                # denormalize tts output based on tts audio config
                mel_postnet_spec = self.tts_model.ap.denormalize(mel_postnet_spec.T).T
                device_type = "cuda" if self.use_cuda else "cpu"
                # renormalize spectrogram based on vocoder config
                vocoder_input = self.vocoder_ap.normalize(mel_postnet_spec.T)
                # compute scale factor for possible sample rate mismatch
                scale_factor = [
                    1,
                    self.vocoder_config["audio"]["sample_rate"] / self.tts_model.ap.sample_rate,
                ]
                if scale_factor[1] != 1:
                    print(" > interpolating tts model output.")
                    vocoder_input = interpolate_vocoder_input(scale_factor, vocoder_input)
                else:
                    vocoder_input = torch.tensor(vocoder_input).unsqueeze(0)  # pylint: disable=not-callable
                # run vocoder model
                # [1, T, C]
                waveform = self.vocoder_model.inference(vocoder_input.to(device_type))
            if self.use_cuda:
                waveform = waveform.cpu()
            if not use_gl:
                waveform = waveform.numpy()
            wavs = waveform.squeeze()

        # compute stats
        process_time = time.time() - start_time
        audio_time = len(wavs) / self.tts_config.audio["sample_rate"]
        print(f" > Processing time: {process_time}")
        print(f" > Real-time factor: {process_time / audio_time}")
        return wavs