File size: 13,615 Bytes
8c70653 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
from typing import Dict, Union
import torch
from torch import nn
from torch.nn import functional as F
from TTS.utils.audio.torch_transforms import TorchSTFT
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss
#################################
# GENERATOR LOSSES
#################################
class STFTLoss(nn.Module):
"""STFT loss. Input generate and real waveforms are converted
to spectrograms compared with L1 and Spectral convergence losses.
It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf"""
def __init__(self, n_fft, hop_length, win_length):
super().__init__()
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
self.stft = TorchSTFT(n_fft, hop_length, win_length)
def forward(self, y_hat, y):
y_hat_M = self.stft(y_hat)
y_M = self.stft(y)
# magnitude loss
loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M))
# spectral convergence loss
loss_sc = torch.norm(y_M - y_hat_M, p="fro") / torch.norm(y_M, p="fro")
return loss_mag, loss_sc
class MultiScaleSTFTLoss(torch.nn.Module):
"""Multi-scale STFT loss. Input generate and real waveforms are converted
to spectrograms compared with L1 and Spectral convergence losses.
It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf"""
def __init__(self, n_ffts=(1024, 2048, 512), hop_lengths=(120, 240, 50), win_lengths=(600, 1200, 240)):
super().__init__()
self.loss_funcs = torch.nn.ModuleList()
for n_fft, hop_length, win_length in zip(n_ffts, hop_lengths, win_lengths):
self.loss_funcs.append(STFTLoss(n_fft, hop_length, win_length))
def forward(self, y_hat, y):
N = len(self.loss_funcs)
loss_sc = 0
loss_mag = 0
for f in self.loss_funcs:
lm, lsc = f(y_hat, y)
loss_mag += lm
loss_sc += lsc
loss_sc /= N
loss_mag /= N
return loss_mag, loss_sc
class L1SpecLoss(nn.Module):
"""L1 Loss over Spectrograms as described in HiFiGAN paper https://arxiv.org/pdf/2010.05646.pdf"""
def __init__(
self, sample_rate, n_fft, hop_length, win_length, mel_fmin=None, mel_fmax=None, n_mels=None, use_mel=True
):
super().__init__()
self.use_mel = use_mel
self.stft = TorchSTFT(
n_fft,
hop_length,
win_length,
sample_rate=sample_rate,
mel_fmin=mel_fmin,
mel_fmax=mel_fmax,
n_mels=n_mels,
use_mel=use_mel,
)
def forward(self, y_hat, y):
y_hat_M = self.stft(y_hat)
y_M = self.stft(y)
# magnitude loss
loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M))
return loss_mag
class MultiScaleSubbandSTFTLoss(MultiScaleSTFTLoss):
"""Multiscale STFT loss for multi band model outputs.
From MultiBand-MelGAN paper https://arxiv.org/abs/2005.05106"""
# pylint: disable=no-self-use
def forward(self, y_hat, y):
y_hat = y_hat.view(-1, 1, y_hat.shape[2])
y = y.view(-1, 1, y.shape[2])
return super().forward(y_hat.squeeze(1), y.squeeze(1))
class MSEGLoss(nn.Module):
"""Mean Squared Generator Loss"""
# pylint: disable=no-self-use
def forward(self, score_real):
loss_fake = F.mse_loss(score_real, score_real.new_ones(score_real.shape))
return loss_fake
class HingeGLoss(nn.Module):
"""Hinge Discriminator Loss"""
# pylint: disable=no-self-use
def forward(self, score_real):
# TODO: this might be wrong
loss_fake = torch.mean(F.relu(1.0 - score_real))
return loss_fake
##################################
# DISCRIMINATOR LOSSES
##################################
class MSEDLoss(nn.Module):
"""Mean Squared Discriminator Loss"""
def __init__(
self,
):
super().__init__()
self.loss_func = nn.MSELoss()
# pylint: disable=no-self-use
def forward(self, score_fake, score_real):
loss_real = self.loss_func(score_real, score_real.new_ones(score_real.shape))
loss_fake = self.loss_func(score_fake, score_fake.new_zeros(score_fake.shape))
loss_d = loss_real + loss_fake
return loss_d, loss_real, loss_fake
class HingeDLoss(nn.Module):
"""Hinge Discriminator Loss"""
# pylint: disable=no-self-use
def forward(self, score_fake, score_real):
loss_real = torch.mean(F.relu(1.0 - score_real))
loss_fake = torch.mean(F.relu(1.0 + score_fake))
loss_d = loss_real + loss_fake
return loss_d, loss_real, loss_fake
class MelganFeatureLoss(nn.Module):
def __init__(
self,
):
super().__init__()
self.loss_func = nn.L1Loss()
# pylint: disable=no-self-use
def forward(self, fake_feats, real_feats):
loss_feats = 0
num_feats = 0
for idx, _ in enumerate(fake_feats):
for fake_feat, real_feat in zip(fake_feats[idx], real_feats[idx]):
loss_feats += self.loss_func(fake_feat, real_feat)
num_feats += 1
loss_feats = loss_feats / num_feats
return loss_feats
#####################################
# LOSS WRAPPERS
#####################################
def _apply_G_adv_loss(scores_fake, loss_func):
"""Compute G adversarial loss function
and normalize values"""
adv_loss = 0
if isinstance(scores_fake, list):
for score_fake in scores_fake:
fake_loss = loss_func(score_fake)
adv_loss += fake_loss
adv_loss /= len(scores_fake)
else:
fake_loss = loss_func(scores_fake)
adv_loss = fake_loss
return adv_loss
def _apply_D_loss(scores_fake, scores_real, loss_func):
"""Compute D loss func and normalize loss values"""
loss = 0
real_loss = 0
fake_loss = 0
if isinstance(scores_fake, list):
# multi-scale loss
for score_fake, score_real in zip(scores_fake, scores_real):
total_loss, real_loss, fake_loss = loss_func(score_fake=score_fake, score_real=score_real)
loss += total_loss
real_loss += real_loss
fake_loss += fake_loss
# normalize loss values with number of scales (discriminators)
loss /= len(scores_fake)
real_loss /= len(scores_real)
fake_loss /= len(scores_fake)
else:
# single scale loss
total_loss, real_loss, fake_loss = loss_func(scores_fake, scores_real)
loss = total_loss
return loss, real_loss, fake_loss
##################################
# MODEL LOSSES
##################################
class GeneratorLoss(nn.Module):
"""Generator Loss Wrapper. Based on model configuration it sets a right set of loss functions and computes
losses. It allows to experiment with different combinations of loss functions with different models by just
changing configurations.
Args:
C (AttrDict): model configuration.
"""
def __init__(self, C):
super().__init__()
assert not (
C.use_mse_gan_loss and C.use_hinge_gan_loss
), " [!] Cannot use HingeGANLoss and MSEGANLoss together."
self.use_stft_loss = C.use_stft_loss if "use_stft_loss" in C else False
self.use_subband_stft_loss = C.use_subband_stft_loss if "use_subband_stft_loss" in C else False
self.use_mse_gan_loss = C.use_mse_gan_loss if "use_mse_gan_loss" in C else False
self.use_hinge_gan_loss = C.use_hinge_gan_loss if "use_hinge_gan_loss" in C else False
self.use_feat_match_loss = C.use_feat_match_loss if "use_feat_match_loss" in C else False
self.use_l1_spec_loss = C.use_l1_spec_loss if "use_l1_spec_loss" in C else False
self.stft_loss_weight = C.stft_loss_weight if "stft_loss_weight" in C else 0.0
self.subband_stft_loss_weight = C.subband_stft_loss_weight if "subband_stft_loss_weight" in C else 0.0
self.mse_gan_loss_weight = C.mse_G_loss_weight if "mse_G_loss_weight" in C else 0.0
self.hinge_gan_loss_weight = C.hinge_G_loss_weight if "hinde_G_loss_weight" in C else 0.0
self.feat_match_loss_weight = C.feat_match_loss_weight if "feat_match_loss_weight" in C else 0.0
self.l1_spec_loss_weight = C.l1_spec_loss_weight if "l1_spec_loss_weight" in C else 0.0
if C.use_stft_loss:
self.stft_loss = MultiScaleSTFTLoss(**C.stft_loss_params)
if C.use_subband_stft_loss:
self.subband_stft_loss = MultiScaleSubbandSTFTLoss(**C.subband_stft_loss_params)
if C.use_mse_gan_loss:
self.mse_loss = MSEGLoss()
if C.use_hinge_gan_loss:
self.hinge_loss = HingeGLoss()
if C.use_feat_match_loss:
self.feat_match_loss = MelganFeatureLoss()
if C.use_l1_spec_loss:
assert C.audio["sample_rate"] == C.l1_spec_loss_params["sample_rate"]
self.l1_spec_loss = L1SpecLoss(**C.l1_spec_loss_params)
def forward(
self, y_hat=None, y=None, scores_fake=None, feats_fake=None, feats_real=None, y_hat_sub=None, y_sub=None
):
gen_loss = 0
adv_loss = 0
return_dict = {}
# STFT Loss
if self.use_stft_loss:
stft_loss_mg, stft_loss_sc = self.stft_loss(y_hat[:, :, : y.size(2)].squeeze(1), y.squeeze(1))
return_dict["G_stft_loss_mg"] = stft_loss_mg
return_dict["G_stft_loss_sc"] = stft_loss_sc
gen_loss = gen_loss + self.stft_loss_weight * (stft_loss_mg + stft_loss_sc)
# L1 Spec loss
if self.use_l1_spec_loss:
l1_spec_loss = self.l1_spec_loss(y_hat, y)
return_dict["G_l1_spec_loss"] = l1_spec_loss
gen_loss = gen_loss + self.l1_spec_loss_weight * l1_spec_loss
# subband STFT Loss
if self.use_subband_stft_loss:
subband_stft_loss_mg, subband_stft_loss_sc = self.subband_stft_loss(y_hat_sub, y_sub)
return_dict["G_subband_stft_loss_mg"] = subband_stft_loss_mg
return_dict["G_subband_stft_loss_sc"] = subband_stft_loss_sc
gen_loss = gen_loss + self.subband_stft_loss_weight * (subband_stft_loss_mg + subband_stft_loss_sc)
# multiscale MSE adversarial loss
if self.use_mse_gan_loss and scores_fake is not None:
mse_fake_loss = _apply_G_adv_loss(scores_fake, self.mse_loss)
return_dict["G_mse_fake_loss"] = mse_fake_loss
adv_loss = adv_loss + self.mse_gan_loss_weight * mse_fake_loss
# multiscale Hinge adversarial loss
if self.use_hinge_gan_loss and not scores_fake is not None:
hinge_fake_loss = _apply_G_adv_loss(scores_fake, self.hinge_loss)
return_dict["G_hinge_fake_loss"] = hinge_fake_loss
adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss
# Feature Matching Loss
if self.use_feat_match_loss and not feats_fake is None:
feat_match_loss = self.feat_match_loss(feats_fake, feats_real)
return_dict["G_feat_match_loss"] = feat_match_loss
adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss
return_dict["loss"] = gen_loss + adv_loss
return_dict["G_gen_loss"] = gen_loss
return_dict["G_adv_loss"] = adv_loss
return return_dict
class DiscriminatorLoss(nn.Module):
"""Like ```GeneratorLoss```"""
def __init__(self, C):
super().__init__()
assert not (
C.use_mse_gan_loss and C.use_hinge_gan_loss
), " [!] Cannot use HingeGANLoss and MSEGANLoss together."
self.use_mse_gan_loss = C.use_mse_gan_loss
self.use_hinge_gan_loss = C.use_hinge_gan_loss
if C.use_mse_gan_loss:
self.mse_loss = MSEDLoss()
if C.use_hinge_gan_loss:
self.hinge_loss = HingeDLoss()
def forward(self, scores_fake, scores_real):
loss = 0
return_dict = {}
if self.use_mse_gan_loss:
mse_D_loss, mse_D_real_loss, mse_D_fake_loss = _apply_D_loss(
scores_fake=scores_fake, scores_real=scores_real, loss_func=self.mse_loss
)
return_dict["D_mse_gan_loss"] = mse_D_loss
return_dict["D_mse_gan_real_loss"] = mse_D_real_loss
return_dict["D_mse_gan_fake_loss"] = mse_D_fake_loss
loss += mse_D_loss
if self.use_hinge_gan_loss:
hinge_D_loss, hinge_D_real_loss, hinge_D_fake_loss = _apply_D_loss(
scores_fake=scores_fake, scores_real=scores_real, loss_func=self.hinge_loss
)
return_dict["D_hinge_gan_loss"] = hinge_D_loss
return_dict["D_hinge_gan_real_loss"] = hinge_D_real_loss
return_dict["D_hinge_gan_fake_loss"] = hinge_D_fake_loss
loss += hinge_D_loss
return_dict["loss"] = loss
return return_dict
class WaveRNNLoss(nn.Module):
def __init__(self, wave_rnn_mode: Union[str, int]):
super().__init__()
if wave_rnn_mode == "mold":
self.loss_func = discretized_mix_logistic_loss
elif wave_rnn_mode == "gauss":
self.loss_func = gaussian_loss
elif isinstance(wave_rnn_mode, int):
self.loss_func = torch.nn.CrossEntropyLoss()
else:
raise ValueError(" [!] Unknown mode for Wavernn.")
def forward(self, y_hat, y) -> Dict:
loss = self.loss_func(y_hat, y)
return {"loss": loss}
|