File size: 13,615 Bytes
8c70653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from typing import Dict, Union

import torch
from torch import nn
from torch.nn import functional as F

from TTS.utils.audio.torch_transforms import TorchSTFT
from TTS.vocoder.utils.distribution import discretized_mix_logistic_loss, gaussian_loss

#################################
# GENERATOR LOSSES
#################################


class STFTLoss(nn.Module):
    """STFT loss. Input generate and real waveforms are converted
    to spectrograms compared with L1 and Spectral convergence losses.
    It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf"""

    def __init__(self, n_fft, hop_length, win_length):
        super().__init__()
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.win_length = win_length
        self.stft = TorchSTFT(n_fft, hop_length, win_length)

    def forward(self, y_hat, y):
        y_hat_M = self.stft(y_hat)
        y_M = self.stft(y)
        # magnitude loss
        loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M))
        # spectral convergence loss
        loss_sc = torch.norm(y_M - y_hat_M, p="fro") / torch.norm(y_M, p="fro")
        return loss_mag, loss_sc


class MultiScaleSTFTLoss(torch.nn.Module):
    """Multi-scale STFT loss. Input generate and real waveforms are converted
    to spectrograms compared with L1 and Spectral convergence losses.
    It is from ParallelWaveGAN paper https://arxiv.org/pdf/1910.11480.pdf"""

    def __init__(self, n_ffts=(1024, 2048, 512), hop_lengths=(120, 240, 50), win_lengths=(600, 1200, 240)):
        super().__init__()
        self.loss_funcs = torch.nn.ModuleList()
        for n_fft, hop_length, win_length in zip(n_ffts, hop_lengths, win_lengths):
            self.loss_funcs.append(STFTLoss(n_fft, hop_length, win_length))

    def forward(self, y_hat, y):
        N = len(self.loss_funcs)
        loss_sc = 0
        loss_mag = 0
        for f in self.loss_funcs:
            lm, lsc = f(y_hat, y)
            loss_mag += lm
            loss_sc += lsc
        loss_sc /= N
        loss_mag /= N
        return loss_mag, loss_sc


class L1SpecLoss(nn.Module):
    """L1 Loss over Spectrograms as described in HiFiGAN paper https://arxiv.org/pdf/2010.05646.pdf"""

    def __init__(
        self, sample_rate, n_fft, hop_length, win_length, mel_fmin=None, mel_fmax=None, n_mels=None, use_mel=True
    ):
        super().__init__()
        self.use_mel = use_mel
        self.stft = TorchSTFT(
            n_fft,
            hop_length,
            win_length,
            sample_rate=sample_rate,
            mel_fmin=mel_fmin,
            mel_fmax=mel_fmax,
            n_mels=n_mels,
            use_mel=use_mel,
        )

    def forward(self, y_hat, y):
        y_hat_M = self.stft(y_hat)
        y_M = self.stft(y)
        # magnitude loss
        loss_mag = F.l1_loss(torch.log(y_M), torch.log(y_hat_M))
        return loss_mag


class MultiScaleSubbandSTFTLoss(MultiScaleSTFTLoss):
    """Multiscale STFT loss for multi band model outputs.
    From MultiBand-MelGAN paper https://arxiv.org/abs/2005.05106"""

    # pylint: disable=no-self-use
    def forward(self, y_hat, y):
        y_hat = y_hat.view(-1, 1, y_hat.shape[2])
        y = y.view(-1, 1, y.shape[2])
        return super().forward(y_hat.squeeze(1), y.squeeze(1))


class MSEGLoss(nn.Module):
    """Mean Squared Generator Loss"""

    # pylint: disable=no-self-use
    def forward(self, score_real):
        loss_fake = F.mse_loss(score_real, score_real.new_ones(score_real.shape))
        return loss_fake


class HingeGLoss(nn.Module):
    """Hinge Discriminator Loss"""

    # pylint: disable=no-self-use
    def forward(self, score_real):
        # TODO: this might be wrong
        loss_fake = torch.mean(F.relu(1.0 - score_real))
        return loss_fake


##################################
# DISCRIMINATOR LOSSES
##################################


class MSEDLoss(nn.Module):
    """Mean Squared Discriminator Loss"""

    def __init__(
        self,
    ):
        super().__init__()
        self.loss_func = nn.MSELoss()

    # pylint: disable=no-self-use
    def forward(self, score_fake, score_real):
        loss_real = self.loss_func(score_real, score_real.new_ones(score_real.shape))
        loss_fake = self.loss_func(score_fake, score_fake.new_zeros(score_fake.shape))
        loss_d = loss_real + loss_fake
        return loss_d, loss_real, loss_fake


class HingeDLoss(nn.Module):
    """Hinge Discriminator Loss"""

    # pylint: disable=no-self-use
    def forward(self, score_fake, score_real):
        loss_real = torch.mean(F.relu(1.0 - score_real))
        loss_fake = torch.mean(F.relu(1.0 + score_fake))
        loss_d = loss_real + loss_fake
        return loss_d, loss_real, loss_fake


class MelganFeatureLoss(nn.Module):
    def __init__(
        self,
    ):
        super().__init__()
        self.loss_func = nn.L1Loss()

    # pylint: disable=no-self-use
    def forward(self, fake_feats, real_feats):
        loss_feats = 0
        num_feats = 0
        for idx, _ in enumerate(fake_feats):
            for fake_feat, real_feat in zip(fake_feats[idx], real_feats[idx]):
                loss_feats += self.loss_func(fake_feat, real_feat)
                num_feats += 1
        loss_feats = loss_feats / num_feats
        return loss_feats


#####################################
# LOSS WRAPPERS
#####################################


def _apply_G_adv_loss(scores_fake, loss_func):
    """Compute G adversarial loss function
    and normalize values"""
    adv_loss = 0
    if isinstance(scores_fake, list):
        for score_fake in scores_fake:
            fake_loss = loss_func(score_fake)
            adv_loss += fake_loss
        adv_loss /= len(scores_fake)
    else:
        fake_loss = loss_func(scores_fake)
        adv_loss = fake_loss
    return adv_loss


def _apply_D_loss(scores_fake, scores_real, loss_func):
    """Compute D loss func and normalize loss values"""
    loss = 0
    real_loss = 0
    fake_loss = 0
    if isinstance(scores_fake, list):
        # multi-scale loss
        for score_fake, score_real in zip(scores_fake, scores_real):
            total_loss, real_loss, fake_loss = loss_func(score_fake=score_fake, score_real=score_real)
            loss += total_loss
            real_loss += real_loss
            fake_loss += fake_loss
        # normalize loss values with number of scales (discriminators)
        loss /= len(scores_fake)
        real_loss /= len(scores_real)
        fake_loss /= len(scores_fake)
    else:
        # single scale loss
        total_loss, real_loss, fake_loss = loss_func(scores_fake, scores_real)
        loss = total_loss
    return loss, real_loss, fake_loss


##################################
# MODEL LOSSES
##################################


class GeneratorLoss(nn.Module):
    """Generator Loss Wrapper. Based on model configuration it sets a right set of loss functions and computes
    losses. It allows to experiment with different combinations of loss functions with different models by just
    changing configurations.

    Args:
        C (AttrDict): model configuration.
    """

    def __init__(self, C):
        super().__init__()
        assert not (
            C.use_mse_gan_loss and C.use_hinge_gan_loss
        ), " [!] Cannot use HingeGANLoss and MSEGANLoss together."

        self.use_stft_loss = C.use_stft_loss if "use_stft_loss" in C else False
        self.use_subband_stft_loss = C.use_subband_stft_loss if "use_subband_stft_loss" in C else False
        self.use_mse_gan_loss = C.use_mse_gan_loss if "use_mse_gan_loss" in C else False
        self.use_hinge_gan_loss = C.use_hinge_gan_loss if "use_hinge_gan_loss" in C else False
        self.use_feat_match_loss = C.use_feat_match_loss if "use_feat_match_loss" in C else False
        self.use_l1_spec_loss = C.use_l1_spec_loss if "use_l1_spec_loss" in C else False

        self.stft_loss_weight = C.stft_loss_weight if "stft_loss_weight" in C else 0.0
        self.subband_stft_loss_weight = C.subband_stft_loss_weight if "subband_stft_loss_weight" in C else 0.0
        self.mse_gan_loss_weight = C.mse_G_loss_weight if "mse_G_loss_weight" in C else 0.0
        self.hinge_gan_loss_weight = C.hinge_G_loss_weight if "hinde_G_loss_weight" in C else 0.0
        self.feat_match_loss_weight = C.feat_match_loss_weight if "feat_match_loss_weight" in C else 0.0
        self.l1_spec_loss_weight = C.l1_spec_loss_weight if "l1_spec_loss_weight" in C else 0.0

        if C.use_stft_loss:
            self.stft_loss = MultiScaleSTFTLoss(**C.stft_loss_params)
        if C.use_subband_stft_loss:
            self.subband_stft_loss = MultiScaleSubbandSTFTLoss(**C.subband_stft_loss_params)
        if C.use_mse_gan_loss:
            self.mse_loss = MSEGLoss()
        if C.use_hinge_gan_loss:
            self.hinge_loss = HingeGLoss()
        if C.use_feat_match_loss:
            self.feat_match_loss = MelganFeatureLoss()
        if C.use_l1_spec_loss:
            assert C.audio["sample_rate"] == C.l1_spec_loss_params["sample_rate"]
            self.l1_spec_loss = L1SpecLoss(**C.l1_spec_loss_params)

    def forward(
        self, y_hat=None, y=None, scores_fake=None, feats_fake=None, feats_real=None, y_hat_sub=None, y_sub=None
    ):
        gen_loss = 0
        adv_loss = 0
        return_dict = {}

        # STFT Loss
        if self.use_stft_loss:
            stft_loss_mg, stft_loss_sc = self.stft_loss(y_hat[:, :, : y.size(2)].squeeze(1), y.squeeze(1))
            return_dict["G_stft_loss_mg"] = stft_loss_mg
            return_dict["G_stft_loss_sc"] = stft_loss_sc
            gen_loss = gen_loss + self.stft_loss_weight * (stft_loss_mg + stft_loss_sc)

        # L1 Spec loss
        if self.use_l1_spec_loss:
            l1_spec_loss = self.l1_spec_loss(y_hat, y)
            return_dict["G_l1_spec_loss"] = l1_spec_loss
            gen_loss = gen_loss + self.l1_spec_loss_weight * l1_spec_loss

        # subband STFT Loss
        if self.use_subband_stft_loss:
            subband_stft_loss_mg, subband_stft_loss_sc = self.subband_stft_loss(y_hat_sub, y_sub)
            return_dict["G_subband_stft_loss_mg"] = subband_stft_loss_mg
            return_dict["G_subband_stft_loss_sc"] = subband_stft_loss_sc
            gen_loss = gen_loss + self.subband_stft_loss_weight * (subband_stft_loss_mg + subband_stft_loss_sc)

        # multiscale MSE adversarial loss
        if self.use_mse_gan_loss and scores_fake is not None:
            mse_fake_loss = _apply_G_adv_loss(scores_fake, self.mse_loss)
            return_dict["G_mse_fake_loss"] = mse_fake_loss
            adv_loss = adv_loss + self.mse_gan_loss_weight * mse_fake_loss

        # multiscale Hinge adversarial loss
        if self.use_hinge_gan_loss and not scores_fake is not None:
            hinge_fake_loss = _apply_G_adv_loss(scores_fake, self.hinge_loss)
            return_dict["G_hinge_fake_loss"] = hinge_fake_loss
            adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss

        # Feature Matching Loss
        if self.use_feat_match_loss and not feats_fake is None:
            feat_match_loss = self.feat_match_loss(feats_fake, feats_real)
            return_dict["G_feat_match_loss"] = feat_match_loss
            adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss
        return_dict["loss"] = gen_loss + adv_loss
        return_dict["G_gen_loss"] = gen_loss
        return_dict["G_adv_loss"] = adv_loss
        return return_dict


class DiscriminatorLoss(nn.Module):
    """Like ```GeneratorLoss```"""

    def __init__(self, C):
        super().__init__()
        assert not (
            C.use_mse_gan_loss and C.use_hinge_gan_loss
        ), " [!] Cannot use HingeGANLoss and MSEGANLoss together."

        self.use_mse_gan_loss = C.use_mse_gan_loss
        self.use_hinge_gan_loss = C.use_hinge_gan_loss

        if C.use_mse_gan_loss:
            self.mse_loss = MSEDLoss()
        if C.use_hinge_gan_loss:
            self.hinge_loss = HingeDLoss()

    def forward(self, scores_fake, scores_real):
        loss = 0
        return_dict = {}

        if self.use_mse_gan_loss:
            mse_D_loss, mse_D_real_loss, mse_D_fake_loss = _apply_D_loss(
                scores_fake=scores_fake, scores_real=scores_real, loss_func=self.mse_loss
            )
            return_dict["D_mse_gan_loss"] = mse_D_loss
            return_dict["D_mse_gan_real_loss"] = mse_D_real_loss
            return_dict["D_mse_gan_fake_loss"] = mse_D_fake_loss
            loss += mse_D_loss

        if self.use_hinge_gan_loss:
            hinge_D_loss, hinge_D_real_loss, hinge_D_fake_loss = _apply_D_loss(
                scores_fake=scores_fake, scores_real=scores_real, loss_func=self.hinge_loss
            )
            return_dict["D_hinge_gan_loss"] = hinge_D_loss
            return_dict["D_hinge_gan_real_loss"] = hinge_D_real_loss
            return_dict["D_hinge_gan_fake_loss"] = hinge_D_fake_loss
            loss += hinge_D_loss

        return_dict["loss"] = loss
        return return_dict


class WaveRNNLoss(nn.Module):
    def __init__(self, wave_rnn_mode: Union[str, int]):
        super().__init__()
        if wave_rnn_mode == "mold":
            self.loss_func = discretized_mix_logistic_loss
        elif wave_rnn_mode == "gauss":
            self.loss_func = gaussian_loss
        elif isinstance(wave_rnn_mode, int):
            self.loss_func = torch.nn.CrossEntropyLoss()
        else:
            raise ValueError(" [!] Unknown mode for Wavernn.")

    def forward(self, y_hat, y) -> Dict:
        loss = self.loss_func(y_hat, y)
        return {"loss": loss}