File size: 6,064 Bytes
12da6cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import pickle
from functools import partial
from typing import Deque

import fire
import jax
import jax.numpy as jnp
import jax.tools.colab_tpu
import matplotlib.pyplot as plt
import optax
from tqdm.auto import tqdm

from .acoustic_trainer import initial_state, loss_vag, val_loss_fn
from .config import FLAGS
from .data_loader import load_textgrid_wav
from .dsp import MelFilter
from .utils import print_flags


def setup_colab_tpu():
    jax.tools.colab_tpu.setup_tpu()


def train(
    batch_size: int = 32,
    steps_per_update: int = 10,
    learning_rate: float = 1024e-6,
):
    """Train acoustic model on multiple cores (TPU)."""
    lr_schedule = optax.exponential_decay(learning_rate, 50_000, 0.5, staircase=True)

    optimizer = optax.chain(
        optax.clip_by_global_norm(1.0),
        optax.adamw(lr_schedule, weight_decay=FLAGS.weight_decay),
    )

    def update_step(prev_state, inputs):
        params, aux, rng, optim_state = prev_state
        rng, new_rng = jax.random.split(rng)
        (loss, new_aux), grads = loss_vag(params, aux, rng, inputs)
        grads = jax.lax.pmean(grads, axis_name="i")
        updates, new_optim_state = optimizer.update(grads, optim_state, params)
        new_params = optax.apply_updates(params, updates)
        next_state = (new_params, new_aux, new_rng, new_optim_state)
        return next_state, loss

    @partial(jax.pmap, axis_name="i")
    def update(params, aux, rng, optim_state, inputs):
        states, losses = jax.lax.scan(
            update_step, (params, aux, rng, optim_state), inputs
        )
        return states, jnp.mean(losses)

    print(jax.devices())
    num_devices = jax.device_count()
    train_data_iter = load_textgrid_wav(
        FLAGS.data_dir,
        FLAGS.max_phoneme_seq_len,
        batch_size * num_devices * steps_per_update,
        FLAGS.max_wave_len,
        "train",
    )
    val_data_iter = load_textgrid_wav(
        FLAGS.data_dir,
        FLAGS.max_phoneme_seq_len,
        batch_size,
        FLAGS.max_wave_len,
        "val",
    )
    melfilter = MelFilter(
        FLAGS.sample_rate,
        FLAGS.n_fft,
        FLAGS.mel_dim,
        FLAGS.fmin,
        FLAGS.fmax,
    )
    batch = next(train_data_iter)
    batch = jax.tree_map(lambda x: x[:1], batch)
    batch = batch._replace(mels=melfilter(batch.wavs.astype(jnp.float32) / (2**15)))
    params, aux, rng, optim_state = initial_state(optimizer, batch)
    losses = Deque(maxlen=1000)
    val_losses = Deque(maxlen=100)

    last_step = -steps_per_update

    # loading latest checkpoint
    ckpt_fn = FLAGS.ckpt_dir / "acoustic_latest_ckpt.pickle"
    if ckpt_fn.exists():
        print("Resuming from latest checkpoint at", ckpt_fn)
        with open(ckpt_fn, "rb") as f:
            dic = pickle.load(f)
            last_step, params, aux, rng, optim_state = (
                dic["step"],
                dic["params"],
                dic["aux"],
                dic["rng"],
                dic["optim_state"],
            )

    tr = tqdm(
        range(
            last_step + steps_per_update, FLAGS.num_training_steps + 1, steps_per_update
        ),
        desc="training",
        total=FLAGS.num_training_steps // steps_per_update + 1,
        initial=last_step // steps_per_update + 1,
    )

    params, aux, rng, optim_state = jax.device_put_replicated(
        (params, aux, rng, optim_state), jax.devices()
    )

    def batch_reshape(batch):
        return jax.tree_map(
            lambda x: jnp.reshape(x, (num_devices, steps_per_update, -1) + x.shape[1:]),
            batch,
        )

    for step in tr:
        batch = next(train_data_iter)
        batch = batch_reshape(batch)
        (params, aux, rng, optim_state), loss = update(
            params, aux, rng, optim_state, batch
        )
        losses.append(loss)

        if step % 10 == 0:
            val_batch = next(val_data_iter)
            val_loss, val_aux, predicted_mel, gt_mel = val_loss_fn(
                *jax.tree_map(lambda x: x[0], (params, aux, rng)), val_batch
            )
            val_losses.append(val_loss)
            attn = jax.device_get(val_aux["acoustic_model"]["attn"])
            predicted_mel = jax.device_get(predicted_mel[0])
            gt_mel = jax.device_get(gt_mel[0])

        if step % 1000 == 0:
            loss = jnp.mean(sum(losses)).item() / len(losses)
            val_loss = sum(val_losses).item() / len(val_losses)
            tr.write(f"step {step}  train loss {loss:.3f}  val loss {val_loss:.3f}")

            # saving predicted mels
            plt.figure(figsize=(10, 10))
            plt.subplot(3, 1, 1)
            plt.imshow(predicted_mel.T, origin="lower", aspect="auto")
            plt.subplot(3, 1, 2)
            plt.imshow(gt_mel.T, origin="lower", aspect="auto")
            plt.subplot(3, 1, 3)
            plt.imshow(attn.T, origin="lower", aspect="auto")
            plt.tight_layout()
            plt.savefig(FLAGS.ckpt_dir / f"mel_{step:06d}.png")
            plt.close()

            # saving checkpoint
            with open(ckpt_fn, "wb") as f:
                params_, aux_, rng_, optim_state_ = jax.tree_map(
                    lambda x: x[0], (params, aux, rng, optim_state)
                )
                pickle.dump(
                    {
                        "step": step,
                        "params": params_,
                        "aux": aux_,
                        "rng": rng_,
                        "optim_state": optim_state_,
                    },
                    f,
                )


if __name__ == "__main__":
    # we don't use these flags.
    del FLAGS.batch_size
    del FLAGS.learning_rate
    del FLAGS.duration_learning_rate
    del FLAGS.duration_lstm_dim
    del FLAGS.duration_embed_dropout_rate

    print_flags(FLAGS.__dict__)

    if "COLAB_TPU_ADDR" in os.environ:
        setup_colab_tpu()

    if not FLAGS.ckpt_dir.exists():
        print("Create checkpoint dir at", FLAGS.ckpt_dir)
        FLAGS.ckpt_dir.mkdir(parents=True, exist_ok=True)

    fire.Fire(train)