File size: 6,600 Bytes
8c70653
 
 
a7960cf
 
5386471
a7960cf
12da6cc
5c1aedb
 
 
8c70653
5c1aedb
a7960cf
8c70653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320b21c
aa14d93
a7960cf
 
 
8c70653
3d29f27
320b21c
a7960cf
 
 
 
320b21c
a7960cf
 
 
 
 
6194d18
8c70653
 
 
 
 
 
 
 
 
 
 
a7960cf
 
 
8c70653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320b21c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c70653
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import gradio as gr
import argparse
import yaml
from vietTTS.hifigan.mel2wave import mel2wave
from vietTTS.nat.text2mel import text2mel
from vietTTS.synthesizer import nat_normalize_text
import numpy as np
import gradio as gr
import re
from vietnam_number import n2w
from vietnam_number import n2w_single
from synthesize import synthesizer
import noisereduce as nr
import os
import scipy.io.wavfile as wavf
from scipy.io import wavfile


TITLE = "Saltlux Text to Speech"
DESCRIPTION = "SLT Vietnamese Text to speech demo."
    
    
class GradioApplication:
    def __init__(self):
    
        inputs = prepare_input()
        outputs = prepare_output()

        self.iface = gr.Interface(fn=self.infer,
                                  title=TITLE,
                                  description=DESCRIPTION,
                                  inputs=inputs,
                                  outputs=outputs,
                                  allow_flagging='never')
        
  
    
    def infer(self, text, lang, duration_rate):
        if(lang == "VietTTS"):
            return using_viettts(text,duration_rate)
        else :
            return using_tacotron(text)
        return 1     

    def run(self):
        try:
            self.iface.launch(height=900,
                              share=False, server_port=7086,
                              enable_queue=True)
        
        except KeyboardInterrupt:
            gr.close_all()


def prepare_input():
    text_input = gr.Textbox(lines=2,
                            placeholder="Lựa chọn model test - VietTTS và Tacotron 2 + Univnet",
                            value="Thành phố muốn thí điểm thu thuế bất động sản thứ 2, tự quyết nhiều quyết định đầu tư để thu hút nguồn vốn tư nhân",
                            label="Text")
    lang_input = gr.Radio(['VietTTS', 'Tacotron2'],
                          type='value',
                          value=None,
                          label="Model select")
    duration_rate_input = gr.Slider(minimum=0.2,
                                    maximum=1,
                                    step=0.1,
                                    value=1.0,
                                    label="Duration (The bigger the value, the slower the speech) - only for vietTTS")
    
    return [text_input, lang_input, duration_rate_input]


def prepare_output():
    outputs = [gr.Audio(label="Output before denoise"),gr.Audio(label="Output after denoise")]
    return outputs
def text_to_speech(text,stop_duration):
    print("starting")
    # prevent too long text
    if len(text) > 500:
        text = text[:500]
    # text_to_speech_tacotron(text)
    # stop_duration_float = float(stop_duration_text)
    text = clean_text(text)
    text = nat_normalize_text(text)
    mel = text2mel(
        text,
        "lexicon.txt",
        stop_duration,
        "acoustic_latest_ckpt.pickle",
        "duration_latest_ckpt.pickle",
    )
    wave = mel2wave(mel, "config.json", "hk_hifi.pickle")
    return (wave * (2**15)).astype(np.int16)

def text_to_speech_tacotron(text):
    print("starting")
    # prevent too long text
    if len(text) > 500:
        text = text[:500]

    wav = synthesizer.tts(text) 
    output = './out.wav'

    synthesizer.save_wav(wav,output)
    return output



def using_viettts(text,stop_duration):
    y = text_to_speech(text,stop_duration)
    fs = 16000
    output = './out.wav'
    output_denoise = './output_denoise.wav'

    wavf.write(output, fs, y)
    rate, data = wavfile.read(output)
  # perform noise reduction
    reduced_noise = nr.reduce_noise(y=data, sr=rate)
    wavfile.write(output_denoise, rate, reduced_noise)
    return (output,output_denoise)

def using_tacotron(text):
    y = text_to_speech_tacotron(text)
    output_denoise = "./output_denoise.wav"
    rate, data = wavfile.read(y)
  # perform noise reduction
    reduced_noise = nr.reduce_noise(y=data, sr=rate)
    wavfile.write(output_denoise, rate, reduced_noise)
    return (y,output_denoise)


def clean_text(test_string):
  list_word = test_string.split()
  # print(list_word)

  regex = r"\d{2}(?P<sep>[-/])\d{1,2}(?P=sep)\d{4}"

  for word in list_word :
    try:
      # print(word)
      searchbox_result = re.match(regex, word)
      day = searchbox_result.group(0)
      day2 = day
      day2 = day2.replace('/',' ').replace('-',' ')
      list_date = day2.split(' ')
      date_result = 'Ngày ' + n2w(list_date[0]) + ' tháng ' + n2w(list_date[1].replace('0','') if list_date[1].startswith('0') else list_date[1]) + ' năm ' + n2w(list_date[2])
      # print(date_result)
      test_string = test_string.replace(word, date_result)

    except AttributeError:
      # print(word) 
      # print("can't make a group")
      continue


  # print(test_string)

  regex2 = r"\d{2}(?P<sep>[-/])\d{1,2}"

  for word in list_word :
    try:
      # print(word)
      searchbox_result = re.match(regex2, word)
      day = searchbox_result.group(0)
      day2 = day
      day2 = day2.replace('/',' ').replace('-',' ')
      list_date = day2.split(' ')
      date_result = 'Ngày ' + n2w(list_date[0]) + ' tháng ' + n2w(list_date[1].replace('0','') if list_date[1].startswith('0') else list_date[1])
      # print(date_result)
      test_string = test_string.replace(word, date_result)

    except AttributeError:
      # print(word) 
      # print("can't make a group")
      continue


  # print(test_string)

  regex3 = r"\d{1,2}(?P<sep>[h:])\d{1,2}"

  for word in list_word :
    try:
      # print(word)
      searchbox_result = re.match(regex3, word)
      day = searchbox_result.group(0)
      day2 = day
      day2 = day2.replace('h',' ').replace(':',' ')
      list_date = day2.split(' ')
      date_result = n2w(list_date[0]) + ' giờ ' + n2w(list_date[1].replace('0','') if list_date[1].startswith('0') else list_date[1]) + ' phút '
      # print(date_result)
      test_string = test_string.replace(word, date_result)

    except AttributeError:
      # print(word) 
      # print("can't make a group")
      continue


  print(test_string)

  for word in list_word :
    try:
      if word.isdigit() :
        # print(word)
        text_result = n2w_single(word)
        # print(text_result)
        test_string = test_string.replace(word, text_result, 1)

    except AttributeError:
      # print(word) 
      print("can't make a group")
      continue


  return test_string



if __name__ == '__main__':
    # args = parse_args()
    
    gradio_application = GradioApplication()
    gradio_application.run()