File size: 7,206 Bytes
8c70653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# adopted from https://github.com/jik876/hifi-gan/blob/master/models.py
import torch
from torch import nn
from torch.nn import functional as F

LRELU_SLOPE = 0.1


class DiscriminatorP(torch.nn.Module):
    """HiFiGAN Periodic Discriminator

    Takes every Pth value from the input waveform and applied a stack of convoluations.

    Note:
        if `period` is 2
        `waveform = [1, 2, 3, 4, 5, 6 ...] --> [1, 3, 5 ... ] --> convs -> score, feat`

    Args:
        x (Tensor): input waveform.

    Returns:
        [Tensor]: discriminator scores per sample in the batch.
        [List[Tensor]]: list of features from each convolutional layer.

    Shapes:
        x: [B, 1, T]
    """

    def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
        super().__init__()
        self.period = period
        get_padding = lambda k, d: int((k * d - d) / 2)
        norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.weight_norm
        self.convs = nn.ModuleList(
            [
                norm_f(nn.Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
                norm_f(nn.Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
                norm_f(nn.Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
                norm_f(nn.Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
                norm_f(nn.Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
            ]
        )
        self.conv_post = norm_f(nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))

    def forward(self, x):
        """
        Args:
            x (Tensor): input waveform.

        Returns:
            [Tensor]: discriminator scores per sample in the batch.
            [List[Tensor]]: list of features from each convolutional layer.

        Shapes:
            x: [B, 1, T]
        """
        feat = []

        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0:  # pad first
            n_pad = self.period - (t % self.period)
            x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, LRELU_SLOPE)
            feat.append(x)
        x = self.conv_post(x)
        feat.append(x)
        x = torch.flatten(x, 1, -1)

        return x, feat


class MultiPeriodDiscriminator(torch.nn.Module):
    """HiFiGAN Multi-Period Discriminator (MPD)
    Wrapper for the `PeriodDiscriminator` to apply it in different periods.
    Periods are suggested to be prime numbers to reduce the overlap between each discriminator.
    """

    def __init__(self, use_spectral_norm=False):
        super().__init__()
        self.discriminators = nn.ModuleList(
            [
                DiscriminatorP(2, use_spectral_norm=use_spectral_norm),
                DiscriminatorP(3, use_spectral_norm=use_spectral_norm),
                DiscriminatorP(5, use_spectral_norm=use_spectral_norm),
                DiscriminatorP(7, use_spectral_norm=use_spectral_norm),
                DiscriminatorP(11, use_spectral_norm=use_spectral_norm),
            ]
        )

    def forward(self, x):
        """
        Args:
            x (Tensor): input waveform.

        Returns:
        [List[Tensor]]: list of scores from each discriminator.
            [List[List[Tensor]]]: list of list of features from each discriminator's each convolutional layer.

        Shapes:
            x: [B, 1, T]
        """
        scores = []
        feats = []
        for _, d in enumerate(self.discriminators):
            score, feat = d(x)
            scores.append(score)
            feats.append(feat)
        return scores, feats


class DiscriminatorS(torch.nn.Module):
    """HiFiGAN Scale Discriminator.
    It is similar to `MelganDiscriminator` but with a specific architecture explained in the paper.

    Args:
        use_spectral_norm (bool): if `True` swith to spectral norm instead of weight norm.

    """

    def __init__(self, use_spectral_norm=False):
        super().__init__()
        norm_f = nn.utils.spectral_norm if use_spectral_norm else nn.utils.weight_norm
        self.convs = nn.ModuleList(
            [
                norm_f(nn.Conv1d(1, 128, 15, 1, padding=7)),
                norm_f(nn.Conv1d(128, 128, 41, 2, groups=4, padding=20)),
                norm_f(nn.Conv1d(128, 256, 41, 2, groups=16, padding=20)),
                norm_f(nn.Conv1d(256, 512, 41, 4, groups=16, padding=20)),
                norm_f(nn.Conv1d(512, 1024, 41, 4, groups=16, padding=20)),
                norm_f(nn.Conv1d(1024, 1024, 41, 1, groups=16, padding=20)),
                norm_f(nn.Conv1d(1024, 1024, 5, 1, padding=2)),
            ]
        )
        self.conv_post = norm_f(nn.Conv1d(1024, 1, 3, 1, padding=1))

    def forward(self, x):
        """
        Args:
            x (Tensor): input waveform.

        Returns:
            Tensor: discriminator scores.
            List[Tensor]: list of features from the convolutiona layers.
        """
        feat = []
        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, LRELU_SLOPE)
            feat.append(x)
        x = self.conv_post(x)
        feat.append(x)
        x = torch.flatten(x, 1, -1)
        return x, feat


class MultiScaleDiscriminator(torch.nn.Module):
    """HiFiGAN Multi-Scale Discriminator.
    It is similar to `MultiScaleMelganDiscriminator` but specially tailored for HiFiGAN as in the paper.
    """

    def __init__(self):
        super().__init__()
        self.discriminators = nn.ModuleList(
            [
                DiscriminatorS(use_spectral_norm=True),
                DiscriminatorS(),
                DiscriminatorS(),
            ]
        )
        self.meanpools = nn.ModuleList([nn.AvgPool1d(4, 2, padding=2), nn.AvgPool1d(4, 2, padding=2)])

    def forward(self, x):
        """
        Args:
            x (Tensor): input waveform.

        Returns:
            List[Tensor]: discriminator scores.
            List[List[Tensor]]: list of list of features from each layers of each discriminator.
        """
        scores = []
        feats = []
        for i, d in enumerate(self.discriminators):
            if i != 0:
                x = self.meanpools[i - 1](x)
            score, feat = d(x)
            scores.append(score)
            feats.append(feat)
        return scores, feats


class HifiganDiscriminator(nn.Module):
    """HiFiGAN discriminator wrapping MPD and MSD."""

    def __init__(self):
        super().__init__()
        self.mpd = MultiPeriodDiscriminator()
        self.msd = MultiScaleDiscriminator()

    def forward(self, x):
        """
        Args:
            x (Tensor): input waveform.

        Returns:
            List[Tensor]: discriminator scores.
            List[List[Tensor]]: list of list of features from each layers of each discriminator.
        """
        scores, feats = self.mpd(x)
        scores_, feats_ = self.msd(x)
        return scores + scores_, feats + feats_