|
from dataclasses import dataclass, field |
|
from typing import List |
|
|
|
from TTS.tts.configs.shared_configs import BaseTTSConfig |
|
from TTS.tts.models.vits import VitsArgs, VitsAudioConfig |
|
|
|
|
|
@dataclass |
|
class VitsConfig(BaseTTSConfig): |
|
"""Defines parameters for VITS End2End TTS model. |
|
|
|
Args: |
|
model (str): |
|
Model name. Do not change unless you know what you are doing. |
|
|
|
model_args (VitsArgs): |
|
Model architecture arguments. Defaults to `VitsArgs()`. |
|
|
|
audio (VitsAudioConfig): |
|
Audio processing configuration. Defaults to `VitsAudioConfig()`. |
|
|
|
grad_clip (List): |
|
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`. |
|
|
|
lr_gen (float): |
|
Initial learning rate for the generator. Defaults to 0.0002. |
|
|
|
lr_disc (float): |
|
Initial learning rate for the discriminator. Defaults to 0.0002. |
|
|
|
lr_scheduler_gen (str): |
|
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to |
|
`ExponentialLR`. |
|
|
|
lr_scheduler_gen_params (dict): |
|
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. |
|
|
|
lr_scheduler_disc (str): |
|
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to |
|
`ExponentialLR`. |
|
|
|
lr_scheduler_disc_params (dict): |
|
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`. |
|
|
|
scheduler_after_epoch (bool): |
|
If true, step the schedulers after each epoch else after each step. Defaults to `False`. |
|
|
|
optimizer (str): |
|
Name of the optimizer to use with both the generator and the discriminator networks. One of the |
|
`torch.optim.*`. Defaults to `AdamW`. |
|
|
|
kl_loss_alpha (float): |
|
Loss weight for KL loss. Defaults to 1.0. |
|
|
|
disc_loss_alpha (float): |
|
Loss weight for the discriminator loss. Defaults to 1.0. |
|
|
|
gen_loss_alpha (float): |
|
Loss weight for the generator loss. Defaults to 1.0. |
|
|
|
feat_loss_alpha (float): |
|
Loss weight for the feature matching loss. Defaults to 1.0. |
|
|
|
mel_loss_alpha (float): |
|
Loss weight for the mel loss. Defaults to 45.0. |
|
|
|
return_wav (bool): |
|
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. |
|
|
|
compute_linear_spec (bool): |
|
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. |
|
|
|
use_weighted_sampler (bool): |
|
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. |
|
|
|
weighted_sampler_attrs (dict): |
|
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities |
|
by overweighting `root_path` by 2.0. Defaults to `{}`. |
|
|
|
weighted_sampler_multipliers (dict): |
|
Weight each unique value of a key returned by the formatter for weighted sampling. |
|
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. |
|
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. |
|
|
|
r (int): |
|
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. |
|
|
|
add_blank (bool): |
|
If true, a blank token is added in between every character. Defaults to `True`. |
|
|
|
test_sentences (List[List]): |
|
List of sentences with speaker and language information to be used for testing. |
|
|
|
language_ids_file (str): |
|
Path to the language ids file. |
|
|
|
use_language_embedding (bool): |
|
If true, language embedding is used. Defaults to `False`. |
|
|
|
Note: |
|
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters. |
|
|
|
Example: |
|
|
|
>>> from TTS.tts.configs.vits_config import VitsConfig |
|
>>> config = VitsConfig() |
|
""" |
|
|
|
model: str = "vits" |
|
|
|
model_args: VitsArgs = field(default_factory=VitsArgs) |
|
audio: VitsAudioConfig = VitsAudioConfig() |
|
|
|
|
|
grad_clip: List[float] = field(default_factory=lambda: [1000, 1000]) |
|
lr_gen: float = 0.0002 |
|
lr_disc: float = 0.0002 |
|
lr_scheduler_gen: str = "ExponentialLR" |
|
lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) |
|
lr_scheduler_disc: str = "ExponentialLR" |
|
lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999875, "last_epoch": -1}) |
|
scheduler_after_epoch: bool = True |
|
optimizer: str = "AdamW" |
|
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.8, 0.99], "eps": 1e-9, "weight_decay": 0.01}) |
|
|
|
|
|
kl_loss_alpha: float = 1.0 |
|
disc_loss_alpha: float = 1.0 |
|
gen_loss_alpha: float = 1.0 |
|
feat_loss_alpha: float = 1.0 |
|
mel_loss_alpha: float = 45.0 |
|
dur_loss_alpha: float = 1.0 |
|
speaker_encoder_loss_alpha: float = 1.0 |
|
|
|
|
|
return_wav: bool = True |
|
compute_linear_spec: bool = True |
|
|
|
|
|
use_weighted_sampler: bool = False |
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {}) |
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) |
|
|
|
|
|
r: int = 1 |
|
add_blank: bool = True |
|
|
|
|
|
test_sentences: List[List] = field( |
|
default_factory=lambda: [ |
|
["It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent."], |
|
["Be a voice, not an echo."], |
|
["I'm sorry Dave. I'm afraid I can't do that."], |
|
["This cake is great. It's so delicious and moist."], |
|
["Prior to November 22, 1963."], |
|
] |
|
) |
|
|
|
|
|
|
|
num_speakers: int = 0 |
|
use_speaker_embedding: bool = False |
|
speakers_file: str = None |
|
speaker_embedding_channels: int = 256 |
|
language_ids_file: str = None |
|
use_language_embedding: bool = False |
|
|
|
|
|
use_d_vector_file: bool = False |
|
d_vector_file: str = None |
|
d_vector_dim: int = None |
|
|
|
def __post_init__(self): |
|
for key, val in self.model_args.items(): |
|
if hasattr(self, key): |
|
self[key] = val |
|
|