|
import glob |
|
import os |
|
import random |
|
from multiprocessing import Manager |
|
|
|
import numpy as np |
|
import torch |
|
from torch.utils.data import Dataset |
|
|
|
|
|
class GANDataset(Dataset): |
|
""" |
|
GAN Dataset searchs for all the wav files under root path |
|
and converts them to acoustic features on the fly and returns |
|
random segments of (audio, feature) couples. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
ap, |
|
items, |
|
seq_len, |
|
hop_len, |
|
pad_short, |
|
conv_pad=2, |
|
return_pairs=False, |
|
is_training=True, |
|
return_segments=True, |
|
use_noise_augment=False, |
|
use_cache=False, |
|
verbose=False, |
|
): |
|
super().__init__() |
|
self.ap = ap |
|
self.item_list = items |
|
self.compute_feat = not isinstance(items[0], (tuple, list)) |
|
self.seq_len = seq_len |
|
self.hop_len = hop_len |
|
self.pad_short = pad_short |
|
self.conv_pad = conv_pad |
|
self.return_pairs = return_pairs |
|
self.is_training = is_training |
|
self.return_segments = return_segments |
|
self.use_cache = use_cache |
|
self.use_noise_augment = use_noise_augment |
|
self.verbose = verbose |
|
|
|
assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len." |
|
self.feat_frame_len = seq_len // hop_len + (2 * conv_pad) |
|
|
|
|
|
self.G_to_D_mappings = list(range(len(self.item_list))) |
|
self.shuffle_mapping() |
|
|
|
|
|
if use_cache: |
|
self.create_feature_cache() |
|
|
|
def create_feature_cache(self): |
|
self.manager = Manager() |
|
self.cache = self.manager.list() |
|
self.cache += [None for _ in range(len(self.item_list))] |
|
|
|
@staticmethod |
|
def find_wav_files(path): |
|
return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True) |
|
|
|
def __len__(self): |
|
return len(self.item_list) |
|
|
|
def __getitem__(self, idx): |
|
"""Return different items for Generator and Discriminator and |
|
cache acoustic features""" |
|
|
|
|
|
if torch.utils.data.get_worker_info(): |
|
random.seed(torch.utils.data.get_worker_info().seed) |
|
|
|
if self.return_segments: |
|
item1 = self.load_item(idx) |
|
if self.return_pairs: |
|
idx2 = self.G_to_D_mappings[idx] |
|
item2 = self.load_item(idx2) |
|
return item1, item2 |
|
return item1 |
|
item1 = self.load_item(idx) |
|
return item1 |
|
|
|
def _pad_short_samples(self, audio, mel=None): |
|
"""Pad samples shorter than the output sequence length""" |
|
if len(audio) < self.seq_len: |
|
audio = np.pad(audio, (0, self.seq_len - len(audio)), mode="constant", constant_values=0.0) |
|
|
|
if mel is not None and mel.shape[1] < self.feat_frame_len: |
|
pad_value = self.ap.melspectrogram(np.zeros([self.ap.win_length]))[:, 0] |
|
mel = np.pad( |
|
mel, |
|
([0, 0], [0, self.feat_frame_len - mel.shape[1]]), |
|
mode="constant", |
|
constant_values=pad_value.mean(), |
|
) |
|
return audio, mel |
|
|
|
def shuffle_mapping(self): |
|
random.shuffle(self.G_to_D_mappings) |
|
|
|
def load_item(self, idx): |
|
"""load (audio, feat) couple""" |
|
if self.compute_feat: |
|
|
|
wavpath = self.item_list[idx] |
|
|
|
|
|
if self.use_cache and self.cache[idx] is not None: |
|
audio, mel = self.cache[idx] |
|
else: |
|
audio = self.ap.load_wav(wavpath) |
|
mel = self.ap.melspectrogram(audio) |
|
audio, mel = self._pad_short_samples(audio, mel) |
|
else: |
|
|
|
|
|
wavpath, feat_path = self.item_list[idx] |
|
|
|
if self.use_cache and self.cache[idx] is not None: |
|
audio, mel = self.cache[idx] |
|
else: |
|
audio = self.ap.load_wav(wavpath) |
|
mel = np.load(feat_path) |
|
audio, mel = self._pad_short_samples(audio, mel) |
|
|
|
|
|
audio = np.pad(audio, (0, self.hop_len), mode="edge") |
|
audio = audio[: mel.shape[-1] * self.hop_len] |
|
assert ( |
|
mel.shape[-1] * self.hop_len == audio.shape[-1] |
|
), f" [!] {mel.shape[-1] * self.hop_len} vs {audio.shape[-1]}" |
|
|
|
audio = torch.from_numpy(audio).float().unsqueeze(0) |
|
mel = torch.from_numpy(mel).float().squeeze(0) |
|
|
|
if self.return_segments: |
|
max_mel_start = mel.shape[1] - self.feat_frame_len |
|
mel_start = random.randint(0, max_mel_start) |
|
mel_end = mel_start + self.feat_frame_len |
|
mel = mel[:, mel_start:mel_end] |
|
|
|
audio_start = mel_start * self.hop_len |
|
audio = audio[:, audio_start : audio_start + self.seq_len] |
|
|
|
if self.use_noise_augment and self.is_training and self.return_segments: |
|
audio = audio + (1 / 32768) * torch.randn_like(audio) |
|
return (mel, audio) |
|
|