tts / vietTTS /nat /acoustic_trainer.py
tobiccino's picture
upload
12da6cc
raw
history blame
6.07 kB
import pickle
from functools import partial
from typing import Deque
import haiku as hk
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import optax
from tqdm.auto import tqdm
from vietTTS.nat.config import AcousticInput
from .config import FLAGS, AcousticInput
from .data_loader import load_textgrid_wav
from .dsp import MelFilter
from .model import AcousticModel
from .utils import print_flags
@hk.transform_with_state
def net(x):
return AcousticModel(is_training=True)(x)
@hk.transform_with_state
def val_net(x):
return AcousticModel(is_training=False)(x)
def loss_fn(params, aux, rng, inputs: AcousticInput, is_training=True):
"""Compute loss"""
melfilter = MelFilter(
FLAGS.sample_rate, FLAGS.n_fft, FLAGS.mel_dim, FLAGS.fmin, FLAGS.fmax
)
wavs = inputs.wavs.astype(jnp.float32) / (2**15)
mels = melfilter(wavs)
B, L, D = mels.shape
go_frame = jnp.zeros((B, 1, D), dtype=jnp.float32)
inp_mels = jnp.concatenate((go_frame, mels[:, :-1, :]), axis=1)
n_frames = inputs.durations * FLAGS.sample_rate / (FLAGS.n_fft // 4)
inputs = inputs._replace(mels=inp_mels, durations=n_frames)
model = net if is_training else val_net
(mel1_hat, mel2_hat), new_aux = model.apply(params, aux, rng, inputs)
loss1 = (jnp.square(mel1_hat - mels) + jnp.square(mel2_hat - mels)) / 2
loss2 = (jnp.abs(mel1_hat - mels) + jnp.abs(mel2_hat - mels)) / 2
loss = jnp.mean((loss1 + loss2) / 2, axis=-1)
num_frames = (inputs.wav_lengths // (FLAGS.n_fft // 4))[:, None]
mask = jnp.arange(0, L)[None, :] < num_frames
loss = jnp.sum(loss * mask) / jnp.sum(mask)
return (loss, new_aux) if is_training else (loss, new_aux, mel2_hat, mels)
train_loss_fn = partial(loss_fn, is_training=True)
val_loss_fn = jax.jit(partial(loss_fn, is_training=False))
loss_vag = jax.value_and_grad(train_loss_fn, has_aux=True)
def initial_state(optimizer, batch):
rng = jax.random.PRNGKey(42)
params, aux = hk.transform_with_state(lambda x: AcousticModel(True)(x)).init(
rng, batch
)
optim_state = optimizer.init(params)
return params, aux, rng, optim_state
def train():
optimizer = optax.chain(
optax.clip_by_global_norm(1.0),
optax.adamw(FLAGS.learning_rate, weight_decay=FLAGS.weight_decay),
)
@jax.jit
def update(params, aux, rng, optim_state, inputs):
rng, new_rng = jax.random.split(rng)
(loss, new_aux), grads = loss_vag(params, aux, rng, inputs)
updates, new_optim_state = optimizer.update(grads, optim_state, params)
new_params = optax.apply_updates(updates, params)
return loss, (new_params, new_aux, new_rng, new_optim_state)
train_data_iter = load_textgrid_wav(
FLAGS.data_dir,
FLAGS.max_phoneme_seq_len,
FLAGS.batch_size,
FLAGS.max_wave_len,
"train",
)
val_data_iter = load_textgrid_wav(
FLAGS.data_dir,
FLAGS.max_phoneme_seq_len,
FLAGS.batch_size,
FLAGS.max_wave_len,
"val",
)
melfilter = MelFilter(
FLAGS.sample_rate, FLAGS.n_fft, FLAGS.mel_dim, FLAGS.fmin, FLAGS.fmax
)
batch = next(train_data_iter)
batch = batch._replace(mels=melfilter(batch.wavs.astype(jnp.float32) / (2**15)))
params, aux, rng, optim_state = initial_state(optimizer, batch)
losses = Deque(maxlen=1000)
val_losses = Deque(maxlen=100)
last_step = -1
# loading latest checkpoint
ckpt_fn = FLAGS.ckpt_dir / "acoustic_latest_ckpt.pickle"
if ckpt_fn.exists():
print("Resuming from latest checkpoint at", ckpt_fn)
with open(ckpt_fn, "rb") as f:
dic = pickle.load(f)
last_step, params, aux, rng, optim_state = (
dic["step"],
dic["params"],
dic["aux"],
dic["rng"],
dic["optim_state"],
)
tr = tqdm(
range(last_step + 1, FLAGS.num_training_steps + 1),
desc="training",
total=FLAGS.num_training_steps + 1,
initial=last_step + 1,
)
for step in tr:
batch = next(train_data_iter)
loss, (params, aux, rng, optim_state) = update(
params, aux, rng, optim_state, batch
)
losses.append(loss)
if step % 10 == 0:
val_batch = next(val_data_iter)
val_loss, val_aux, predicted_mel, gt_mel = val_loss_fn(
params, aux, rng, val_batch
)
val_losses.append(val_loss)
attn = jax.device_get(val_aux["acoustic_model"]["attn"])
predicted_mel = jax.device_get(predicted_mel[0])
gt_mel = jax.device_get(gt_mel[0])
if step % 1000 == 0:
loss = sum(losses).item() / len(losses)
val_loss = sum(val_losses).item() / len(val_losses)
tr.write(f"step {step} train loss {loss:.3f} val loss {val_loss:.3f}")
# saving predicted mels
plt.figure(figsize=(10, 10))
plt.subplot(3, 1, 1)
plt.imshow(predicted_mel.T, origin="lower", aspect="auto")
plt.subplot(3, 1, 2)
plt.imshow(gt_mel.T, origin="lower", aspect="auto")
plt.subplot(3, 1, 3)
plt.imshow(attn.T, origin="lower", aspect="auto")
plt.tight_layout()
plt.savefig(FLAGS.ckpt_dir / f"mel_{step:06d}.png")
plt.close()
# saving checkpoint
with open(ckpt_fn, "wb") as f:
pickle.dump(
{
"step": step,
"params": params,
"aux": aux,
"rng": rng,
"optim_state": optim_state,
},
f,
)
if __name__ == "__main__":
print_flags(FLAGS.__dict__)
if not FLAGS.ckpt_dir.exists():
print("Create checkpoint dir at", FLAGS.ckpt_dir)
FLAGS.ckpt_dir.mkdir(parents=True, exist_ok=True)
train()